【題目】已知在中,,,點在拋物線上.
(1)求的邊所在的直線方程;
(2)求的面積最小值,并求出此時點的坐標;
(3)若為線段上的任意一點,求的取值范圍.
【答案】(1)(2)的面積最小值為3,此時點坐標為.(3)
【解析】
(1)直接由兩點式可得直線方程;
(2) 設(shè)點坐標為,利用點到直線的距離求出點到的距離,再根據(jù)二次函數(shù)知識求出這個距離的最大值,以及取得最大值的條件,再根據(jù)面積公式可求得面積的最大值,根據(jù)取得最大值的條件可求得點的坐標;
(3)根據(jù) 的幾何意義,轉(zhuǎn)化為 ,的斜率,結(jié)合圖象可得答案.
解:(1)∵,,
∴直線的方程為,即.
(2)設(shè)點坐標為,
如圖所示:
則點到直線距離,
又∵,
∴,
∴的面積最小值為3.當且僅當時等號成立,此時點坐標為.
(3)∵為線段上任意一點,
∴的幾何意義為坐標原點與線段上的點所確定直線的斜率,
即的幾何意義為當直線與線段有交點時,直線的斜率,
如圖所示:
,,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (為參數(shù)),以直角坐標系原點為極點,x軸非負半軸為極軸并取相同的單位長度建立極坐標系,
(1)求曲線C的極坐標方程,并說明其表示什么軌跡;
(2)若直線l的極坐標方程為,求曲線C上的點到直線l的最大距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的方程是,雙曲線的左右焦點分別為的左右頂點,而的左右頂點分別是的左右焦點.
(1)求雙曲線的方程;
(2)若直線與雙曲線恒有兩個不同的交點,且與的兩個交點A和B滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,是正方形所在平面外一點,在面上的投影為,,,,有以下四個命題:
(1)面;
(2)為中點,且;
(3)以,作為鄰邊的平行四邊形面積是32;
(4)的內(nèi)切球半徑為.
其中正確命題的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某縣共有戶籍人口60萬,經(jīng)統(tǒng)計,該縣60歲及以上、百歲以下的人口占比,百歲及以上老人15人.現(xiàn)從該縣60歲及以上、百歲以下的老人中隨機抽取230人,得到如下頻數(shù)分布表:
年齡段(歲) | ||||
人數(shù)(人) | 125 | 75 | 25 | 5 |
(1)從樣本中70歲及以上老人中,采用分層抽樣的方法抽取21人,進一步了解他們的生活狀況,則80歲及以上老人應(yīng)抽多少人?
(2)從(1)中所抽取的80歲及以上老人中,再隨機抽取2人,求抽到90歲及以上老人的概率;
(3)該縣按省委辦公廳、省人民政府辦公廳《關(guān)于加強新時期老年人優(yōu)待服務(wù)工作的意見》精神,制定如下老年人生活補貼措施,由省、市、縣三級財政分級撥款:
①本縣戶籍60歲及以上居民,按城鄉(xiāng)居民養(yǎng)老保險實施辦法每月領(lǐng)取55元基本養(yǎng)老金;
②本縣戶籍80歲及以上老年人額外享受高齡老人生活補貼;
(a)百歲及以上老年人,每人每月發(fā)放345元的生活補貼;
(b)90歲及以上、百歲以下老年人,每人每月發(fā)放200元的生活補貼;
(c)80歲及以上、90歲以下老年人,每人每月發(fā)放100元的生活補貼.
試估計政府執(zhí)行此項補貼措施的年度預(yù)算.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有關(guān)命題的說法錯誤的是( )
A.若p∨q為假命題,則p、q均為假命題
B.“x=1”是“x2﹣3x+2=0”的充分不必要條件
C.命題“若x2﹣3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2﹣3x+2≠0”
D.對于命題p:x≥0,2x=3,則¬P:x<0,2x≠3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com