【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,已知曲線,將曲線上的點向左平移一個單位,然后縱坐標不變,橫坐標軸伸長到原來的2倍,得到曲線,又已知直線是參數(shù)),且直線與曲線交于兩點.

I)求曲線的直角坐標方程,并說明它是什么曲線;

II)設定點,求.

【答案】(I,是橢圓;(II.

【解析】

試題分析:I)對曲線兩邊乘以化為直角坐標為,經過平移和伸縮變換后得到曲線的直角坐標方程為,這是焦點在軸上的橢圓;II)將直線的參數(shù)方程代入曲線的方程中,化簡得,寫出根與系數(shù)關系,,結合點的幾何意義可求得.

試題解析:

I)曲線的直角坐標方程為:,即,

曲線的直角坐標方程為,

曲線表示焦點坐標為,,長軸長為4的橢圓.

II)直線是參數(shù))

將直線的方程代入曲線的方程中,

.

對應的參數(shù)方程為,

,

結合的幾何意義可知,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠有工人1000名,其中250名工人參加短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為類工人).現(xiàn)用分層抽樣方法(按,類分二層)從該工廠的工人中共抽查100名工人,調查他們的生產能力(生產能力指一天加工的零件數(shù)).

(1)類工人和類工人中個抽查多少工人?

(2)從類工人中的抽查結果和從類工人中的抽查結果分別如下表1和表2.

表1:

表2:

先確定,,再完成下列頻率分布直方圖,就生產能力而言,類工人中個體間的差異程度與類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結論)

分別估計類工人和類工人生產能力的平均數(shù),并估計該工廠工人的生產能力的平均數(shù)(同一組中

的數(shù)據用該組區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的左、右焦點分別是,下頂點為,線段的中點為為坐標原點,如圖,若拋物線軸的交點為,且經過.

(1)求橢圓的方程;

(2),為拋物線上的一動點,過點作拋物線的切線交橢圓于點、兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工經過市場調查,甲產品的日銷售量(單位:噸)與銷售價格(單位:萬元/噸)滿足關系式(其中為常數(shù)),已知銷售價格為萬元/噸時,每天可售出該產品.

(1)求的值;

(2)若該產品的成本價格為萬元/噸,當銷售價格為多少時,該產品每天的利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 是圓的直徑, 垂直圓所在的平面, 是圓上的點.

(1)求證: 平面;

(2)設的中點, 的重心,求證: 平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平面平面,四邊形是正方形,四邊形是菱形,且,,點、分別為邊的中點,點是線段上的動點.

(1)求證:;

(2)求三棱錐的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一次研究性學習有整理數(shù)據撰寫報告兩項任務,兩項任務無先后順序,每項任務的完成相互獨立,互不影響某班研究性學習有甲、乙兩個小組根據以往資料統(tǒng)計,甲小組完成研究性學習兩項任務的概率都為,乙小組完成研究性學習兩項任務的概率都為若在一次研究性學習中,兩個小組完成任務項數(shù)相等而且兩個小組完成任務數(shù)都不少于一項,則稱該班為和諧研究班

1,求在一次研究性學習中,已知甲小組完成兩項任務的條件下,該班榮獲和諧研究班的概率;

2設在完成4次研究性學習中該班獲得和諧研究班的次數(shù)為,若的數(shù)學期望,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),設,,其中,

1若函數(shù)在區(qū)間上單調遞增,求實數(shù)的取值范圍;

2,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,橢圓上的點滿足,且的面積為

1求橢圓的方程;

2設橢圓的左、右頂點分別為、,過點的動直線與橢圓相交于兩點,直線與直線的交點為,證明:點總在直線

查看答案和解析>>

同步練習冊答案