7.命題:“?x∈R,x2+mx+2≤0”為假命題,是命題|m-1|<2的(  )
A.充分不必要條件B.必要非充分條件C.充要條件D.都不是

分析 分別求出命題:“?x∈R,x2+mx+2≤0”為假命題的m的范圍,再求出命題|m-1|<2的m的范圍,根據(jù)集合的包含關(guān)系判斷即可.

解答 解:若命題:“?x∈R,x2+mx+2≤0”為假命題,
則?x∈R,x2+mx+2>0恒成立,
故△=m2-8<0,解得:-2$\sqrt{2}$<m<2$\sqrt{2}$,
由|m-1|<2,解得:-1<m<3,
故命題:“?x∈R,x2+mx+2≤0”為假命題是命題|m-1|<2的既不充分也不必要條件,
故選:D.

點評 本題考查了充分必要條件,考查二次函數(shù)的性質(zhì)以及絕對值不等式問題,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.四棱錐P-ABCD中,底面ABCD是矩形,∠PCD=90°,二面角P-CD-B為60°,BC=1,AB=PC=2.
(1)求證:平面PAB⊥平面ABCD;
(2)求點C到平面PAD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知點(x,y)滿足$\left\{\begin{array}{l}x+2y-8≥0\\ 2x-y-6≤0\\ x-3y+7≥0\end{array}\right.$,則$z=\frac{x+1}{y-1}$的取值范圍為( 。
A.$[{\frac{3}{2},5}]$B.$[{\frac{2}{3},5}]$C.$[{\frac{3}{2},7}]$D.$[{\frac{2}{3},7}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設(shè)直線l 的傾斜角α滿足α∈($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$),則直線l 的斜率k 的取值范圍為(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知x∈(0,+∞)時,不等式9x-m•3x+m+1>0恒成立,則m的取值范圍是( 。
A.2-2$\sqrt{2}$<m<2+2$\sqrt{2}$B.m<2C.m<2+2$\sqrt{2}$D.m$≥2+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如表:
x-10245
f(x)12021
f(x)的導函數(shù)y=f′(x)的圖象如圖所示,則f(x)的極小值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知ABCD是平行四邊形,P點是ABCD所在平面外的一點,連接PA、PB、PC、PD.設(shè)點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.
(1)試用向量方法證明E、F、G、H四點共面;
(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知xn=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,若5a1=2a2,則a0+a1+a2+a3+…+an=64.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.曲線y=tanx在點($\frac{π}{4}$,1)處的切線的斜率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

查看答案和解析>>

同步練習冊答案