如圖,在直四棱柱A1B1C1D1ABCD中,當(dāng)?shù)酌嫠倪呅?i>ABCD滿足條件____     (或任何能推導(dǎo)出這個條件的其他條件,例如ABCD是正方形、菱形等)時,有A1CB1D1(注:填上你認(rèn)為正確的一種條件即可,不必考慮所有可能的情形)

答案:AC⊥BD
提示:

   A1C在平面A1B1C1D1上的投影為A1C1,要使A1CB1D1,則A1C1B1D1,又因為是直四棱柱,則需要ACBD


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直四棱柱ABCD-A1B1C1D1中,AB=AD=2,DC=2
3
,AA1=
3
,AD⊥DC,AC⊥BD垂足為E.
(Ⅰ)求證BD⊥A1C;
(Ⅱ)求二面角A1-BD-C1的大小;
(Ⅲ)求異面直線AD與BC1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(Ⅰ)設(shè)E是DC的中點,求證:D1E∥平面A1BD;
(Ⅱ)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市楊家坪中學(xué)高二(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(Ⅰ)設(shè)E是DC的中點,求證:D1E∥平面A1BD;
(Ⅱ)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省白山市靖宇一中高考數(shù)學(xué)復(fù)習(xí)階段綜合測試(三)(解析版) 題型:解答題

如圖,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(Ⅰ)設(shè)E是DC的中點,求證:D1E∥平面A1BD;
(Ⅱ)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年山東省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(Ⅰ)設(shè)E是DC的中點,求證:D1E∥平面A1BD;
(Ⅱ)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

同步練習(xí)冊答案