分析 (1)先求出函數(shù)的導(dǎo)數(shù),得到導(dǎo)函數(shù)小于0,從而求出函數(shù)的單調(diào)區(qū)間;(2)根據(jù)函數(shù)零點(diǎn)的判定定理進(jìn)行證明即可.
解答 解:(1)∵f′(x)=$\frac{a}{x-a}$-x+1=$\frac{a-(x+1)(x-a)}{x-a}$,
∵a<0,x>a,
∴x-a>0,a-(x+1)(x-a)<0,
∴f′(x)<0,
∴f(x)在(0,+∞)單調(diào)遞減;
(2)由-1<a<2(ln2-1),
∴a+1>0,a+2<2ln2,
∴$\frac{1}{2}$(a+2)<ln2,a-1<2ln2-3<0,
由(1)f(x)在(0,+∞)單調(diào)遞減,
∴f(a+1)>f(a+2),
而f(a+1)=aln(a+1-a)-$\frac{1}{2}$(a+1)2+(a+1)
=-$\frac{1}{2}$a2-a-$\frac{1}{2}$+a+1
=-$\frac{1}{2}$(a+1)(a-1)>0,
f(a+2)=aln(a+2-a)-$\frac{1}{2}$(a+2)2+(a+2)
=aln2-$\frac{1}{2}$a(a+2)
=a[ln2$\frac{1}{2}$a+2)]<0,
∴函數(shù)f(x)只有一個(gè)零點(diǎn)x0,且a+1<x0<a+2.
點(diǎn)評(píng) 本題考察了函數(shù)的單調(diào)性問題,考察導(dǎo)數(shù)的應(yīng)用,函數(shù)的零點(diǎn)的判定定理,本題屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | a | C. | -1 | D. | $\frac{2\sqrt{a}}{a-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com