【題目】已知數(shù)列的前項(xiàng)和滿足為常數(shù),,且),,,若存在正整數(shù),使得成立;數(shù)列是首項(xiàng)為2,公差為的等差數(shù)列,為其前項(xiàng)和,則以下結(jié)論正確的是(

A.B.

C.D.

【答案】B

【解析】

根據(jù),,令,得到,進(jìn)而得到,由,,轉(zhuǎn)化為,,再根據(jù),,得到這個(gè)數(shù)列的奇數(shù)項(xiàng)恒負(fù)且遞增,偶數(shù)項(xiàng)恒正且遞減,則存在正整數(shù),使得成立,轉(zhuǎn)化為存在正整數(shù),有成立,得到d的范圍,再利用數(shù)列是首項(xiàng)為2,公差為的等差數(shù)列求解.

因?yàn)?/span>,,

所以,解得,

所以.

因?yàn)?/span>,

,(即奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正),

又因?yàn)?/span>,,

所以這個(gè)數(shù)列的奇數(shù)項(xiàng)恒負(fù)且遞增,偶數(shù)項(xiàng)恒正且遞減,

所以條件轉(zhuǎn)化為存在正整數(shù),使得,

只需,即.

因?yàn)?/span>,,所以,所以A項(xiàng)不正確,B項(xiàng)正確;

因?yàn)?/span>,,,所以,所以的大小無(wú)法判斷.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市在開(kāi)展創(chuàng)建全國(guó)文明城市活動(dòng)中,工作有序扎實(shí),成效顯著,尤其是城市環(huán)境衛(wèi)生大為改觀,深得市民好評(píng).“創(chuàng)文過(guò)程中,某網(wǎng)站推出了關(guān)于環(huán)境治理和保護(hù)問(wèn)題情況的問(wèn)卷調(diào)查,現(xiàn)從參與問(wèn)卷調(diào)查的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

1)求出a的值;

2)若已從年齡較小的第12組中用分層抽樣的方法抽取5人,現(xiàn)要再?gòu)倪@5人中隨機(jī)抽取3人進(jìn)行問(wèn)卷調(diào)查,設(shè)第2組抽到人,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班同學(xué)在假期進(jìn)行社會(huì)實(shí)踐活動(dòng),對(duì)歲的人群隨機(jī)抽取n人進(jìn)行了一次當(dāng)前投資生活方式——“房地產(chǎn)投資的調(diào)查,得到如下統(tǒng)計(jì)和各年齡段人數(shù)頻率分布直方圖:

)求,,的值;

)從年齡在歲的房地產(chǎn)投資人群中采取分層抽樣法抽取9人參加投資管理學(xué)習(xí)活動(dòng),其中選取3人作為代表發(fā)言,記選取的3名代表中年齡在歲的人數(shù)為,求的分布列和期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,平面平面PAD,E的中點(diǎn),FDC上一點(diǎn),GPC上一點(diǎn),且.

1)求證:平面平面PAB;

2)若,求直線PB與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若的圖象上相鄰兩條對(duì)稱(chēng)軸的距離為,圖象過(guò)點(diǎn).

1)求的表達(dá)式和的遞增區(qū)間;

2)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象.若函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐的四個(gè)頂點(diǎn)都在球的表面上,平面,,,則球的半徑為______;若的中點(diǎn),過(guò)點(diǎn)作球的截面,則截面面積的最小值是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,,都是等邊三角形.

1)證明:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某項(xiàng)針對(duì)我國(guó)《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)》的研究中,列出各個(gè)學(xué)段每個(gè)主題所包含的條目數(shù)(如下表),下圖是統(tǒng)計(jì)表的條目數(shù)轉(zhuǎn)化為百分比,按各學(xué)段繪制的等高條形圖,由圖表分析得出以下四個(gè)結(jié)論,其中錯(cuò)誤的是(

A.除了綜合實(shí)踐外,其它三個(gè)領(lǐng)域的條目數(shù)都隨著學(xué)段的升高而增加,尤其圖象幾何在第三學(xué)段增加較多,約是第二學(xué)段的.

B.所有主題中,三個(gè)學(xué)段的總和圖形幾何條目數(shù)最多,占50%,綜合實(shí)踐最少,約占4% .

C.第一、二學(xué)段數(shù)與代數(shù)條目數(shù)最多,第三學(xué)段圖形幾何條目數(shù)最多.

D.數(shù)與代數(shù)條目數(shù)雖然隨著學(xué)段的增長(zhǎng)而增長(zhǎng),而其百分比卻一直在減少.“圖形幾何條目數(shù),百分比都隨學(xué)段的增長(zhǎng)而增長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為是參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸

為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)在曲線上,曲線在點(diǎn)處的切線與直線垂直,求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案