【題目】已知三棱錐的四個頂點都在球的表面上,平面,,,,則球的半徑為______;若的中點,過點作球的截面,則截面面積的最小值是______

【答案】

【解析】

過底面外接圓的圓心作垂直于底面的直線,則球心在該直線上,可得,然后即可求出球的半徑,若的中點,,重合,過點作球的截面,則截面面積最小時是與垂直的面,即是三角形的外接圓,然后算出答案即可.

如圖所示:由題意知底面三角形為直角三角形,所以底面外接圓的半徑,

過底面外接圓的圓心作垂直于底面的直線,則球心在該直線上,可得,

連接,設(shè)外接球的半徑為,所以,解得

的中點,重合,過點作球的截面,

則截面面積最小時是與垂直的面,即是三角形的外接圓,

而三角形的外接圓半徑是斜邊的一半,即2,所以截面面積為

故答案為:,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某市旅游管理部門為提升該市26個旅游景點的服務(wù)質(zhì)量,對該市26個旅游景點的交通、安全、環(huán)保、衛(wèi)生、管理五項指標進行評分,每項評分最低分0分,最高分100分,每個景點總分為這五項得分之和,根據(jù)考核評分結(jié)果,繪制交通得分與安全得分散點圖、交通得分與景點總分散點圖如下:

請根據(jù)圖中所提供的信息,完成下列問題:

I)若從交通得分前6名的景點中任取2個,求其安全得分都大于90分的概率;

II)若從景點總分排名前6名的景點中任取3個,記安全得分不大于90分的景點個數(shù)為,求隨機變量的分布列和數(shù)學期望;

III)記該市26個景點的交通平均得分為安全平均得分為,寫出的大小關(guān)系?(只寫出結(jié)果)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的右焦點為,以原點為圓心,短半軸長為半徑的圓恰好經(jīng)過橢圓的兩焦點,且該圓截直線所得的弦長為.

1)求橢圓的標準方程;

2)過定點的直線交橢圓于兩點、,橢圓上的點滿足,試求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年底,武漢發(fā)生了新冠肺炎疫情,2020年初開始蔓延.黨中央國務(wù)院面對“突發(fā)災(zāi)難”果斷采取措施,舉國上下,萬眾一心支援武漢,全國各地醫(yī)療隊陸續(xù)增援湖北,紛紛投身疫情防控與救治病人之中.為了分擔“抗疫英雄”的后顧之憂,某校教師志愿者開展“愛心輔導”活動,為抗疫前線醫(yī)務(wù)工作者子女開展在線輔導.春節(jié)期間隨機安排甲乙兩位志愿者為一位初中生輔導功課共3次,每位志愿者至少輔導1次,每一次只有1位志愿者輔導,到甲恰好輔導兩次的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和滿足為常數(shù),,且),,若存在正整數(shù),使得成立;數(shù)列是首項為2,公差為的等差數(shù)列,為其前項和,則以下結(jié)論正確的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)證明:;

2)(i)證明:當時,對任意,總有;

ii)討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足

1)求數(shù)列的通項公式;

2)設(shè),數(shù)列的前項和為,求;

3)設(shè),問:是否存在非零整數(shù),使數(shù)列為遞增數(shù)列?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù)).

1)求曲線的參數(shù)方程與直線的普通方程;

2)設(shè)點過為曲線上的動點,點和點為直線上的點,且滿足為等邊三角形,求邊長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從2011年到2018年參加北約”“華約考試而獲得加分的學生(每位學生只能參加北約”“華約中的一種考試)人數(shù)可以通過以下表格反映出來.(為了方便計算,將2011年編號為12012年編號為2,依此類推)

年份

1

2

3

4

5

6

7

8

人數(shù)

2

3

4

4

7

7

6

6

1)求這八年來,該校參加北約”“華約考試而獲得加分的學生人數(shù)的中位數(shù)和方差;

2)根據(jù)最近五年的數(shù)據(jù),利用最小二乘法求出之間的線性回歸方程,并依此預測該校2019年參加北約”“華約考試而獲得加分的學生人數(shù).(結(jié)果要求四舍五入至個位)

參考公式:.

查看答案和解析>>

同步練習冊答案