【題目】2016年9月,第22屆魯臺(tái)經(jīng)貿(mào)洽談會(huì)在濰坊魯臺(tái)會(huì)展中心舉行,在會(huì)展期間某展銷商銷售一種商品,根據(jù)市場(chǎng)調(diào)查,每件商品售價(jià)x(元)與銷量t(萬(wàn)元)之間的函數(shù)關(guān)系如圖所示,又知供貨價(jià)格與銷量呈反比,比例系數(shù)為20.(注:每件產(chǎn)品利潤(rùn)=售價(jià)﹣供貨價(jià)格)
(1)求售價(jià)15元時(shí)的銷量及此時(shí)的供貨價(jià)格;
(2)當(dāng)銷售價(jià)格為多少時(shí)總利潤(rùn)最大,并求出最大利潤(rùn).

【答案】
(1)解:每件商品售價(jià)x(元)與銷量t(萬(wàn)件)之間的函數(shù)關(guān)系為t=20﹣x(0≤x≤20),

設(shè)價(jià)格為y,則y= ,x=15時(shí),t=5萬(wàn)件,y=4萬(wàn)元;


(2)解:總利潤(rùn)L=(x﹣ )t=xt﹣20=x(20﹣x)﹣20≤ ﹣20=80,

當(dāng)且僅當(dāng)x=10元時(shí)總利潤(rùn)最大,最大利潤(rùn)80萬(wàn)元.


【解析】(1)每件商品售價(jià)x(元)與銷量t(萬(wàn)件)之間的函數(shù)關(guān)系為t=20﹣x(0≤x≤20),設(shè)價(jià)格為y,則y= ,即可求售價(jià)15元時(shí)的銷量及此時(shí)的供貨價(jià)格;(2)總利潤(rùn)L=(x﹣ )t=xt﹣20=x(20﹣x)﹣20≤ ﹣20=80,可得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其中ω>0. (I)若對(duì)任意x∈R都有 ,求ω的最小值;
(II)若函數(shù)y=lgf(x)在區(qū)間 上單調(diào)遞增,求ω的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知0<k<4直線L:kx﹣2y﹣2k+8=0和直線M:2x+k2y﹣4k2﹣4=0與兩坐標(biāo)軸圍成一個(gè)四邊形,則這個(gè)四邊形面積最小值時(shí)k值為(
A.2
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(x﹣3)的定義域?yàn)椋?/span>
A.[﹣3,﹣1]
B.[0,2]
C.[2,5]
D.[3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙兩名同學(xué)在某項(xiàng)測(cè)試中得分成績(jī)的莖葉圖如圖所示,x1 , x2分別表示知甲、乙兩名同學(xué)這項(xiàng)測(cè)試成績(jī)的眾數(shù),s12 , s22分別表示知甲、乙兩名同學(xué)這項(xiàng)測(cè)試成績(jī)的方差,則有(

A.x1>x2 , s12<s22
B.x1=x2 , s12>s22
C.x1=x2 , s12=s22
D.x1=x2 , s12<s22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某幾何體的三視圖如右圖,其正視圖中的曲線部分為半個(gè)圓弧,則該幾何體的表面積為(
A.19+πcm2
B.22+4πcm2
C.10+6 +4πcm2
D.13+6 +4πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分別求出適合下列條件的直線方程: (Ⅰ)經(jīng)過(guò)點(diǎn)P(﹣3,2)且在x軸上的截距等于在y軸上截距的2倍;
(Ⅱ)經(jīng)過(guò)直線2x+7y﹣4=0與7x﹣21y﹣1=0的交點(diǎn),且和A(﹣3,1),B(5,7)等距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知空間四邊形OABC各邊及對(duì)角線長(zhǎng)都相等,E,F(xiàn)分別為AB,OC的中點(diǎn),求0E與BF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱錐P﹣ABC,底面ABC為邊長(zhǎng)為2 的正三角形,平面PBC⊥平面ABC,PB=PC=2,D為AP上一點(diǎn),AD=2DP,O為底面三角形中心.

(1)求證DO∥面PBC;
(2)求證:BD⊥AC;
(3)設(shè)M為PC中點(diǎn),求平面MBD和平面BDO所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案