【題目】斐波那契數(shù)列{an}滿足: .若將數(shù)列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前n項所占的格子的面積之和為Sn , 每段螺旋線與其所在的正方形所圍成的扇形面積為cn , 則下列結(jié)論錯誤的是(
A.
B.a1+a2+a3+…+an=an+2﹣1
C.a1+a3+a5+…+a2n﹣1=a2n﹣1
D.4(cn﹣cn﹣1)=πan﹣2an+1

【答案】C
【解析】解:由題意,a1=1,a3=2,a4=3,a5=5,a6=8,a7=13,

∴a1+a3=3≠a4﹣1,a1+a3+a5=8≠a6﹣1,

故選:C.

【考點精析】認(rèn)真審題,首先需要了解歸納推理(根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+a(x﹣1),其中a∈R. (Ⅰ) 當(dāng)a=﹣1時,求證:f(x)≤0;
(Ⅱ) 對任意t≥e,存在x∈(0,+∞),使tlnt+(t﹣1)[f(x)+a]>0成立,求a的取值范圍.
(其中e是自然對數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為中國傳統(tǒng)智力玩具魯班鎖,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對稱,六根完全相同的正四棱柱分成三組,經(jīng)90°榫卯起來.現(xiàn)有一魯班鎖的正四棱柱的底面正方形邊長為1,欲將其放入球形容器內(nèi)(容器壁的厚度忽略不計),若球形容器表面積的最小值為30π,則正四棱柱體的高為(
A.
B.
C.
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)=x+ (x>0)都在x=x0處取得最小值.
(1)求f(x0)﹣g(x0)的值.
(2)設(shè)函數(shù)h(x)=f(x)﹣g(x),h(x)的極值點之和落在區(qū)間(k,k+1),k∈N,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為評估兩套促銷活動方案(方案1運作費用為5元/件;方案2的運作費用為2元/件),在某地區(qū)部分營銷網(wǎng)點進行試點(每個試點網(wǎng)點只采用一種促銷活動方案),運作一年后,對比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.
(1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動運作費用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的8組售價xi(單位:元/件,整數(shù))和銷量yi(單位:件)(i=1,2,…,8)如下表所示:

售價x

33

35

37

39

41

43

45

47

銷量y

840

800

740

695

640

580

525

460

①請根據(jù)下列數(shù)據(jù)計算相應(yīng)的相關(guān)指數(shù)R2 , 并根據(jù)計算結(jié)果,選擇合適的回歸模型進行擬合;
②根據(jù)所選回歸模型,分析售價x定為多少時?利潤z可以達到最大.

49428.74

11512.43

175.26

124650

(附:相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓 的圓心為F1 , 直線l過點F2(2,0)且不與x軸、y軸垂直,且與圓F1于C,D兩點,過F2作F1C的平行線交直線F1D于點E,
(1)證明||EF1|﹣|EF2||為定值,并寫出點E的軌跡方程;
(2)設(shè)點E的軌跡為曲線Γ,直線l交Γ于M,N兩點,過F2且與l垂直的直線與圓F1交于P,Q兩點,求△PQM與△PQN的面積之和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是首項為1,公差為2的等差數(shù)列,{bn}是首項為1,公比為q的等比數(shù)列.記cn=an+bn , n=1,2,3,….
(1)若{cn}是等差數(shù)列,求q的值;
(2)求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1(﹣1,0),F(xiàn)2(1,0)分別是橢圓C: =1(a>0)的左、右焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若A,B分別在直線x=﹣2和x=2上,且AF1⊥BF1
(。┊(dāng)△ABF1為等腰三角形時,求△ABF1的面積;
(ⅱ)求點F1 , F2到直線AB距離之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(cosx)﹣x與函數(shù)g(x)=cos(sinx)﹣x在區(qū)間 內(nèi)都為減函數(shù),設(shè) ,且cosx1=x1 , sin(cosx2)=x2 , cos(sinx3)=x3 , 則x1 , x2 , x3的大小關(guān)系是( )
A.x1<x2<x3
B.x3<x1<x2
C.x2<x1<x3
D.x2<x3<x1

查看答案和解析>>

同步練習(xí)冊答案