【題目】已知兩條直線l1:axby+4=0,l2:(a1)x+y+b=0. 求滿足下列條件的a,b值.

)l1l2且l1過點(diǎn)(3,1);

)l1l2且原點(diǎn)到這兩直線的距離相等.

【答案】a=2,b=2a=2,b=﹣2或

【解析】

試題分析:)由兩直線垂直可知斜率乘積為-1,結(jié)合直線過的點(diǎn)的坐標(biāo)可得到關(guān)于a,b的方程,解方程可求得a,b值由兩直線平行可知斜率相等時(shí),結(jié)合兩距離相等可得到關(guān)于a,b的方程,解方程可求得a,b值

試題解析:l1l2,a(a﹣1)+(﹣b)×1=0…(1)

又l1過點(diǎn)(﹣3,﹣1),則﹣3a+b+4=0…(2)

聯(lián)立(1)(2)可得,a=2,b=2. …………………5分

)依題意有,,且,

解得a=2,b=﹣2或 …………………10分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)的高鐵技術(shù)發(fā)展迅速,鐵道部門計(jì)劃在兩城市之間開通高速列車,假設(shè)列車在試運(yùn)行期間,每天在兩個(gè)時(shí)間段內(nèi)各發(fā)一趟由城開往城的列車(兩車發(fā)車情況互不影響),城發(fā)車時(shí)間及概率如下表所示:

發(fā)車

時(shí)間

概率

若甲、乙兩位旅客打算從城到城,他們到達(dá)火車站的時(shí)間分別是周六的和周日的(只考慮候車時(shí)間,不考慮其他因素).

(1)設(shè)乙候車所需時(shí)間為隨機(jī)變量(單位:分鐘),求的分布列和數(shù)學(xué)期望;

(2)求甲、乙兩人候車時(shí)間相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)為常數(shù), 的一個(gè)零點(diǎn)是,函數(shù)是自然對(duì)數(shù)的底數(shù), 設(shè)函數(shù)

1過點(diǎn)坐標(biāo)原點(diǎn)作曲線的切線, 證明切點(diǎn)的橫坐標(biāo)為;

2,若函數(shù)在區(qū)間上是單調(diào)函數(shù), 的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其最小正周期為

1在區(qū)間上的減區(qū)間;

2將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍縱坐標(biāo)不變,再將所得的圖象向右平移個(gè)單位,得到函數(shù)的圖象,若關(guān)于的方程在區(qū)間上有且只有一個(gè)實(shí)數(shù)根求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點(diǎn)A(2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).

(1)求圓C的方程;

(2)若=2,求實(shí)數(shù)k的值;

(3)過點(diǎn)(0,4)作動(dòng)直線m交圓C于E,F(xiàn)兩點(diǎn).試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過點(diǎn)M(2,0)?若存在,求出圓P的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題實(shí)數(shù)滿足其中,命題實(shí)數(shù)滿足

1,且為真,求實(shí)數(shù)的取值范圍;

2的充分不必要條件,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若有窮數(shù)列是正整數(shù)),滿足是正整數(shù),且),就稱該數(shù)列為“對(duì)稱數(shù)列”。例如,數(shù)列與數(shù)列都是“對(duì)稱數(shù)列”.

(1)已知數(shù)列是項(xiàng)數(shù)為9的對(duì)稱數(shù)列,且,,,,成等差數(shù)列, , ,試求 , , ,并求前9項(xiàng)和.

(2)若是項(xiàng)數(shù)為的對(duì)稱數(shù)列,且構(gòu)成首項(xiàng)為31,公差為的等差數(shù)列,數(shù)列項(xiàng)和為,則當(dāng)為何值時(shí), 取到最大值?最大值為多少?

(3)設(shè)項(xiàng)的“對(duì)稱數(shù)列”,其中是首項(xiàng)為1,公比為2的等比數(shù)列.求項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

求函數(shù)的單調(diào)區(qū)間;

當(dāng)時(shí),證明:對(duì)任意的,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】語文成績(jī)服從正態(tài)分布,數(shù)學(xué)成績(jī)的頻率分布直方圖如下:

I如果成績(jī)大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?假設(shè)數(shù)學(xué)成績(jī)?cè)陬l率分布直方圖中各段是均勻分布的

II如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從I中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望

附參考公式,則,

查看答案和解析>>

同步練習(xí)冊(cè)答案