某單位職工舉行義務獻血活動,在體檢合格的人中,O型血共有18人,A型血共有10人,B型血共有8人,AB型血共有3人.從四種血型的人中各選1人去獻血,不同的選法有
 
種.
考點:計數(shù)原理的應用
專題:排列組合
分析:要從四種血型的人中各選1人,即要在每種血型的人中依次選出1人后,在這四種不同的血型中分別有18,10,8,3結果,用分步計數(shù)原理得到結果
解答: 解:從O型血的人中選1人有18不同的選法,從A型血中選1人有10同的選法,
從B型血的人中選1人有8不同的選法,從AB型血的人中選1人有3種不同的選法.
從要從四種血型的人中各選1人,即要在每種血型的人中依次選出1人后,
這種“各選1人去獻血”的事情才完成,所以用分步計數(shù)原理.
有18×10×8×3=4320種,
故答案為:4320.
點評:本題考查分類計數(shù)原理和分步計數(shù)原理,把這兩個原理進行比較,同學們要認真體會這兩種原理的使用條件.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二項式(5x-
1
x
n展開式中各項系數(shù)之和是各項二項式系數(shù)之和的16倍;
(1)求n;
(2)求展開式中二項式系數(shù)最大的項;
(3)求展開式中所有x的有理項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=aln(x+1)+x2
(Ⅰ)當a>0時,求函數(shù)的極大值和極小值點;
(Ⅱ)證明:對任意的正整數(shù)n,不等式ln
n2+1
n2+n
1
n2
-
1
n4
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩人約定在上午7:00到8:00之間到某站乘公共汽車,在這段時間內(nèi)有3班公共汽車,它們開車時刻分別為7:20、7:40、8:00,如果他們約定,見車就乘,求甲、乙同乘一班車的概率(假定甲、乙兩人到達車站的時刻是互相不關聯(lián)的,且每人在7時到8時的任何時刻到達車站是等可能的)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x上恒有兩點關于直線y=kx+3對稱,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

極坐標系下點動點M的軌跡方程為ρcosθ+ρsinθ=1,則動點M的直角坐標方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線y2=2px(p>0)的焦點為F,準線為l,點A(0,2),線段FA與拋物線交于點B,過B作l的垂線,垂足為M.若AM⊥MF,則p=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1
-1
(x2-sinx)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用0,1,2,3,4,5這六個數(shù)字可以組成多少個無重復數(shù)字的:
①六位奇數(shù);
②個位數(shù)字不是5的六位數(shù);
③不大于4310的四位偶數(shù).

查看答案和解析>>

同步練習冊答案