已知拋物線y2=4x上恒有兩點(diǎn)關(guān)于直線y=kx+3對(duì)稱,則k的取值范圍是
 
考點(diǎn):直線與圓錐曲線的關(guān)系
專題:高考數(shù)學(xué)專題,圓錐曲線中的最值與范圍問題
分析:設(shè)出B、C兩點(diǎn)坐標(biāo),得到直線BC方程x=-ky+m,把直線BC方程與拋物線方程聯(lián)立,化為一元二次方程,由韋達(dá)定理求出BC中點(diǎn),應(yīng)用中點(diǎn)在對(duì)稱軸上,且判別式大于0,可求出k的取值范圍.
解答: 解:設(shè)B、C關(guān)于直線y=kx+3對(duì)稱,故可設(shè)直線BC方程為x=-ky+m,代入y2=4x,得 y2+4ky-4m=0.
設(shè)B(x1,y1)、C(x2,y2),
則 BC中點(diǎn)M(x0,y0),
則y0=
y1+y2
2
=-2k,x0=2k2+m.
∵點(diǎn)M(x0,y0)在直線y=kx+3上,
∴-2k=k(2k2+m)+3,
∴m=-
2k3+2k+3
k

又∵直線BC與拋物線交于不同兩點(diǎn),∴△=16k2+16m>0.
把m代入化簡(jiǎn)得-
2k3+2k+3
k
<0,
(k+1)(k2-k+3)
k
<0,
解得-1<k<0.
故答案為:(-1,0)
點(diǎn)評(píng):本題考查點(diǎn)關(guān)于線的對(duì)稱問題,兩條直線垂直的性質(zhì),中點(diǎn)公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=m+(4-m2)i(m∈R),z2=2cosθ+(λ+3sinθ)i(λ∈R),若z1=z2,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠ABC=∠ADC=90゜,∠BAD=120゜,AD=AB=a,若PA=λa(λ>0).
(1)求證:平面PBD⊥平面PAC;
(2)當(dāng)λ為何值時(shí),點(diǎn)A在平面PBD內(nèi)的射影G恰好是△PBD的重心?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若m,n∈[-1,1],m+n≠0時(shí),有
f(m)+f(n)
m+n
>0.
(Ⅰ)證明f(x)在[-1,1]上是增函數(shù);
(Ⅱ)解不等式f(x2-1)+f(3-3x)<0
(Ⅲ)若f(x)≤t2-2at+1對(duì)?x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有6名學(xué)生,其中有3名會(huì)唱歌,2名會(huì)跳舞,1名既會(huì)唱歌也會(huì)跳舞.現(xiàn)從中選出2名會(huì)唱歌的,1名會(huì)跳舞的去參加文藝演出,則共有多少種選法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位職工舉行義務(wù)獻(xiàn)血活動(dòng),在體檢合格的人中,O型血共有18人,A型血共有10人,B型血共有8人,AB型血共有3人.從四種血型的人中各選1人去獻(xiàn)血,不同的選法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面有六個(gè)命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=
2
,k∈Z};
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn);
④函數(shù)y=tanx在其定義域上是單調(diào)遞增函數(shù);
⑤函數(shù)y=sin(x-
π
2
)是偶函數(shù);
⑥若
a
b
=0,則
a
=
0
b
=
0
;
其中真命題的序號(hào)是
 
(寫出所有真命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算∫
 
3
0
(2x-ex)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=1,an+1=an+
1
n2+n
,則a2014=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案