【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列敘述中錯(cuò)誤的是( )
A.消耗1升汽油乙車最多可行駛5千米.
B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多.
C.甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油.
D.某城市機(jī)動(dòng)車最高限速80千米/小時(shí),相同條件下,在該市用丙車比用乙車更省油.
【答案】ABC
【解析】
過橫軸上某一點(diǎn)做縱軸的平行線,這條線和三條折線的交點(diǎn)的意思是相同速度下的三個(gè)車的不同的燃油效率,過縱軸上某一點(diǎn)做橫軸的平行線,這條線和三條折線的交點(diǎn)的意思是相同燃油效率下的三個(gè)車的不同的速度,利用這一點(diǎn)就可以很快解決問題.涉及到將圖形語言轉(zhuǎn)化為數(shù)學(xué)語言的能力和簡(jiǎn)單的邏輯推理能力.
解:對(duì)于A,由圖象可知當(dāng)速度大于40km/h時(shí),乙車的燃油效率大于5km/L,
∴當(dāng)速度大于40km/h時(shí),消耗1升汽油,乙車的行駛距離大于5km,故A錯(cuò)誤;
對(duì)于B,由圖象可知當(dāng)速度相同時(shí),甲車的燃油效率最高,即當(dāng)速度相同時(shí),消耗1升汽油,甲車的行駛路程最遠(yuǎn),
∴以相同速度行駛相同路程,三輛車中,甲車消耗汽油最少,故B錯(cuò)誤;
對(duì)于C,由圖象可知當(dāng)速度為80km/h時(shí),甲車的燃油效率為10km/L,即甲車行駛10km時(shí),耗油1升,故行駛1小時(shí),路程為80km,燃油為8升,故C錯(cuò)誤;
對(duì)于D,由圖象可知當(dāng)速度小于80km/h時(shí),丙車的燃油效率大于乙車的燃油效率,
∴用丙車比用乙車更省油,故D正確.
故選:ABC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與直線只有一個(gè)公共點(diǎn),點(diǎn)是拋物線上的動(dòng)點(diǎn).
(1)求拋物線的方程;
(2)①若,求證:直線過定點(diǎn);
②若是拋物線上與原點(diǎn)不重合的定點(diǎn),且,求證:直線的斜率為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,,,平面ABCD,E為PD的中點(diǎn),.
(1)求四棱錐的體積V;
(2)若F為PC的中點(diǎn),求證:平面平面AEF;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知0<m<2,動(dòng)點(diǎn)M到兩定點(diǎn)F1(﹣m,0),F2(m,0)的距離之和為4,設(shè)點(diǎn)M的軌跡為曲線C,若曲線C過點(diǎn).
(1)求m的值以及曲線C的方程;
(2)過定點(diǎn)且斜率不為零的直線l與曲線C交于A,B兩點(diǎn).證明:以AB為直徑的圓過曲線C的右頂點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將6個(gè)數(shù)2、0、1、9、20、19按任意次序排成一行,拼成一個(gè)8位數(shù)(首位不為0),則產(chǎn)生的不同的8位數(shù)的個(gè)數(shù)為______ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等腰梯形中,∥,,直角梯形所在的平面垂直于平面,且,.
(1)證明:平面平面;
(2)點(diǎn)在線段上,試確定點(diǎn)的位置,使平面與平面所成的二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐的底面ABCD是邊長(zhǎng)為a的菱形,面ABCD,,E,F分別是CD,PC的中點(diǎn).
(1)求證:平面平面PAB;
(2)M是PB上的動(dòng)點(diǎn),EM與平面PAB所成的最大角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時(shí),,給出下列命題:
①函數(shù)有2個(gè)零點(diǎn);
②的解集為;
③,,都有;
④當(dāng)時(shí),,則.
其中真命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, , , , ,直線與平面成角, 為的中點(diǎn), , .
(Ⅰ)若,求證:平面平面;
(Ⅱ)若,求直線與平面所成角的正弦值的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com