【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時(shí),關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)解,求證:.

【答案】1)當(dāng)時(shí),單調(diào)遞增,在單調(diào)遞減;

當(dāng)時(shí),單調(diào)遞減.(2)證明見解析;

【解析】

1)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍求出函數(shù)的單調(diào)區(qū)間即可;

2)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍求出函數(shù)的單調(diào)區(qū)間,結(jié)合函數(shù)的單調(diào)性證明即可.

解:函數(shù)的定義域是,

,

①當(dāng),即時(shí),單調(diào)遞增,在單調(diào)遞減,

②當(dāng),即時(shí),單調(diào)遞減.

2)證明:設(shè)

所以,

當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞增;

當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞減;

所以處取得最大值.

當(dāng)時(shí),方程有兩個(gè)不同的實(shí)數(shù)解,

所以函數(shù)的兩個(gè)不同的零點(diǎn),一個(gè)零點(diǎn)比1小,一個(gè)零點(diǎn)比1大.

不妨設(shè),

,且,得,且,

,所以,

所以,令,,

,,

所以

所以函數(shù)在區(qū)間上單調(diào)遞增,,

所以,

又因?yàn)?/span>,所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20203月,國內(nèi)新冠肺炎疫情得到有效控制,人們開始走出家門享受春光.某旅游景點(diǎn)為吸引游客,推出團(tuán)體購票優(yōu)惠方案如下表:

購票人數(shù)

1~50

51~100

100以上

門票價(jià)格

13/

11/

9/

兩個(gè)旅游團(tuán)隊(duì)計(jì)劃游覽該景點(diǎn).若分別購票,則共需支付門票費(fèi)1290元;若合并成個(gè)團(tuán)隊(duì)購票,則需支付門票費(fèi)990元,那么這兩個(gè)旅游團(tuán)隊(duì)的人數(shù)之差為(

A.20B.30C.35D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列和等比數(shù)列中, ,項(xiàng)和.

(1)若 ,求實(shí)數(shù)的值;

(2)是否存在正整數(shù),使得數(shù)列的所有項(xiàng)都在數(shù)列中?若存在,求出所有的,若不存在,說明理由;

(3)是否存在正實(shí)數(shù),使得數(shù)列中至少有三項(xiàng)在數(shù)列中,但中的項(xiàng)不都在數(shù)列中?若存在,求出一個(gè)可能的的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓是橢圓內(nèi)任一點(diǎn).設(shè)經(jīng)過的兩條不同直線分別于橢圓交于點(diǎn)的斜率分別為

1)當(dāng)經(jīng)過橢圓右焦點(diǎn)且中點(diǎn)時(shí),求:

①橢圓的標(biāo)準(zhǔn)方程;

②四邊形面積的取值范圍.

2)當(dāng)時(shí),若點(diǎn)重合于點(diǎn),且.求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟(jì)合作關(guān)系,共同打造政治互信、經(jīng)濟(jì)融合、文化包容的命運(yùn)共同體.2015年以來,“一帶一路”建設(shè)成果顯著.如圖是20152019年,我國對“一帶一路”沿線國家進(jìn)出口情況統(tǒng)計(jì)圖,下列描述錯(cuò)誤的是( )

A.這五年,出口總額之和比進(jìn)口總額之和

B.這五年,2015年出口額最少

C.這五年,2019年進(jìn)口增速最快

D.這五年,出口增速前四年逐年下降

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解高中學(xué)生對數(shù)學(xué)課是否喜愛是否和性別有關(guān),隨機(jī)調(diào)查220名高中學(xué)生,將他們的意見進(jìn)行了統(tǒng)計(jì),得到如下的列聯(lián)表.

喜愛數(shù)學(xué)課

不喜愛數(shù)學(xué)課

合計(jì)

男生

90

20

110

女生

70

40

110

合計(jì)

160

60

220

1)根據(jù)上面的列聯(lián)表判斷,能否有的把握認(rèn)為喜愛數(shù)學(xué)課與性別有關(guān);

2)為培養(yǎng)學(xué)習(xí)興趣,從不喜愛數(shù)學(xué)課的學(xué)生中進(jìn)行進(jìn)一步了解,從上述調(diào)查的不喜愛數(shù)學(xué)課的人員中按分層抽樣抽取6人,再從這6人中隨機(jī)抽出2名進(jìn)行電話回訪,求抽到的2人中至少有1男生的概率.

參考公式:.

P

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假如你的公司計(jì)劃購買臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰,在購進(jìn)機(jī)器時(shí),可以一次性額外購買幾次維修服務(wù),每次維修服務(wù)費(fèi)用200元,另外實(shí)際維修一次還需向維修人員支付小費(fèi),小費(fèi)每次50元,在機(jī)器使用期間,如果維修次數(shù)超過購機(jī)時(shí)購買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費(fèi)用500元,無需支付小費(fèi),現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)一次性購買幾次維修服務(wù),為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計(jì)表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

表示1臺(tái)機(jī)器在三年使用期內(nèi)的維修次數(shù),表示1臺(tái)機(jī)器在維修上所需的費(fèi)用(單位:元),表示購機(jī)的同時(shí)購買的維修服務(wù)次數(shù).

1)若,求的函數(shù)解析式.

2)若要求維修次數(shù)不大于的頻率不小于0.8,求的值.

3)假設(shè)這100臺(tái)機(jī)器在購機(jī)的同時(shí)每臺(tái)都購買10次維修服務(wù),或每臺(tái)都購買11次維修服務(wù),分別計(jì)算這100臺(tái)機(jī)器在維修上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺(tái)機(jī)器的同時(shí)應(yīng)購買10次還是11次維修服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,曲線由曲線和曲線組成,其中點(diǎn)為曲線所在圓錐曲線的焦點(diǎn),點(diǎn)為曲線所在圓錐曲線的焦點(diǎn).

(Ⅰ)若,求曲線的方程;

(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點(diǎn),求證:弦的中點(diǎn)必在曲線的另一條漸近線上;

(Ⅲ)對于(Ⅰ)中的曲線,若直線過點(diǎn)交曲線于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1+a2+…+anan+12.

1)若a12,求數(shù)列{an}的通項(xiàng)公式;

2)若數(shù)列1,a2,a4,b1b2,bn,成等差數(shù)列,求數(shù)列{bn}的前n項(xiàng)和為Sn.

查看答案和解析>>

同步練習(xí)冊答案