已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個(gè)焦點(diǎn),點(diǎn)P是雙曲線上的一點(diǎn),且滿足∠F1PF2=90°.若△PF1F2的面積為4,且雙曲線的離心率為
3
,則雙曲線的實(shí)軸長(zhǎng)為( 。
A、2
B、
6
C、2
2
D、4
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用雙曲線的定義||PF1|-|PF2||=2a,設(shè)雙曲線的焦距為2c,通過|PF1|2+|PF2|2=|F1F2|2=4c2,結(jié)合△PF1F2的面積以及雙曲線的離心率即可求解實(shí)軸長(zhǎng)度.
解答: 解:由條件可得||PF1|-|PF2||=2a,由題意可知△F1PF2為直角三角形,
設(shè)雙曲線的焦距為2c,則|PF1|2+|PF2|2=|F1F2|2=4c2,
故(|PF1|-|PF2|)2+2|PF1|•|PF2|=|F1F2|2=4c2,即4a2+2|PF1|•|PF2|=4c2,
故|PF1|•|PF2|=2c2-2a2=2b2,故△PF1F2的面積為
1
2
|PF1|•|PF2|=b2=4,再由雙曲線的離心率e=
c
a
=
3
,故c=
3
a,故b2=c2-a2=2a2=4,即a=
2
,故實(shí)軸為2a=2
2

故選:C.
點(diǎn)評(píng):本題考查雙曲線的基本性質(zhì)的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=a2-2a+2,an+1=an+2(n-a)+1,n∈N+,當(dāng)且僅當(dāng)n=3時(shí)an最小,則實(shí)數(shù)a的取值范圍為 ( 。
A、(-1,3)
B、(
5
2
,3)
C、(2,4)
D、(
5
2
,
7
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x>-1,求函數(shù)y=
(x+5)(x+2)
x+1
的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC為等腰三角形,∠A=∠B=30°,BD為AC邊上的高,若
AB
=a,
AC
=b,則
BD
等于( 。
A、
3
2
a+b
B、
3
2
a-b
C、
3
2
b+a
D、
3
2
b-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示的程序框圖,若輸入的n是50,則輸出的變量S的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax3+cx+5,已知f(-3)=3,則f(3)等于( 。
A、3B、-3C、2D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在棱長(zhǎng)為2的正方形ABCD-A1B1C1D1中,G為AA1的中點(diǎn),則直線BD與平面B1D1G的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

99本書,分給3人,一人96本,一人2本一人一本,有幾種不同的分法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P是側(cè)棱CC1上的一點(diǎn),CP=m,試確定m,使得直線AP與平面BDD1B1所成角的正切值為
3
28
19

查看答案和解析>>

同步練習(xí)冊(cè)答案