【題目】如圖,直線平面,垂足為,正四面體的棱長為2,分別是直線和平面上的動點,且,則下列判斷:①點到棱中點的距離的最大值為;②正四面體在平面上的射影面積的最大值為.其中正確的說法是( ).

A.①②都正確B.①②都錯誤C.①正確,②錯誤D.①錯誤,②正確

【答案】C

【解析】

由題意,點在以為直徑的球面上的點,所以點到棱中點的距離的最大值為點到球心的距離再加上球的半徑,可判斷①,當當重合時,求出正四面體在在平面上的射影面積,可判斷②.

由題意,點在以為直徑的球面上的點.

到棱中點的距離,即以為直徑的球面上的點到棱中點的距離.

所以點到棱中點的距離的最大值為點到球心的距離再加上球的半徑.

的中點為,則為以為直徑的球的球心,半徑為

所以

所以點到棱中點的距離的最大值為,故正確①.

由直線平面,且,則平面.

在正四面體中,,,所以平面

所以在平面上的射影平行且相等.

重合時,正四面體在在平面上的射影為對角線為2的正方形.

此時射影的面積為2,所以②不正確.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面ABCD,,,.

1)求證:平面PAD

2)若EPC的中點,求直線BE與平面PAD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是國家統(tǒng)計局于202019日發(fā)布的201812月到201912月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:20192月與20182月相比較稱同比,20192月與20191月相比較稱環(huán)比)根據(jù)該折線圖,下列結論錯誤的是(

A.201912月份,全國居民消費價格環(huán)比持平

B.201812月至201912月全國居民消費價格環(huán)比均上漲

C.201812月至201912月全國居民消費價格同比均上漲

D.201811月的全國居民消費價格高于201712月的全國居民消費價格

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校開設了射擊選修課,規(guī)定向兩個靶進行射擊:先向靶射擊一次,命中得1分,沒有命中得0分,向靶連續(xù)射擊兩次,每命中一次得2分,沒命中得0分;小明同學經訓練可知:向靶射擊,命中的概率為,向靶射擊,命中的概率為,假設小明同學每次射擊的結果相互獨立.現(xiàn)對小明同學進行以上三次射擊的考核.

1)求小明同學恰好命中一次的概率;

2)求小明同學獲得總分的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù)),以原點O為極點,x正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求直線l的普通方程和曲線C的直角坐標方程;

2)設P0,-1),直線lC的交點為M,N,線段MN的中點為Q,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若實數(shù),滿足的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列中,,點在拋物線.數(shù)列中,點在經過點,以為方向向量的直線.

1)求數(shù)列,的通項公式;

2)若,問是否存在,使得成立?若存在,求出的值;若不存在,說明理由;

3)對任意的正整數(shù),不等式成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將邊長為5的菱形ABCD沿對角線AC折起,頂點B移動至處,在以點B',A,C,為頂點的四面體AB'CD中,棱ACB'D的中點分別為E、F,若AC6,且四面體AB'CD的外接球球心落在四面體內部,則線段EF長度的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓與軸相切于點,過點,分別作動圓異于軸的兩切線,設兩切線相交于,點的軌跡為曲線.

1)求曲線的軌跡方程;

2)過的直線與曲線相交于不同兩點,若曲線上存在點,使得成立,求實數(shù)的范圍.

查看答案和解析>>

同步練習冊答案