【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)元;重量超過(guò)的包裹,除收費(fèi)元之外,超過(guò)的部分,每超出(不足,按計(jì)算)需再收元.
該公司將近天,每天攬件數(shù)量統(tǒng)計(jì)如下:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
(1)某人打算將, , 三件禮物隨機(jī)分成兩個(gè)包裹寄出,求該人支付的快遞費(fèi)不超過(guò)元的概率;
(2)該公司從收取的每件快遞的費(fèi)用中抽取元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.前臺(tái)工作人員每人每天攬件不超過(guò)件,工資元,目前前臺(tái)有工作人員人,那么,公司將前臺(tái)工作人員裁員人對(duì)提高公司利潤(rùn)是否更有利?
【答案】(1) ;(2)答案見(jiàn)解析.
【解析】試題分析: 通過(guò)列表給出寄出方式,運(yùn)用古典概率即可計(jì)算結(jié)果求出各種情況的頻率,分別求出不裁員和裁員兩種情況的利潤(rùn),比較結(jié)果
解析:(1)由題意,寄出方式有以下三種可能:
情況 | 第一個(gè)包裹 | 第二個(gè)包裹 | 甲支付的總快遞費(fèi) | ||||
禮物 | 重量() | 快遞費(fèi)(元) | 禮物 | 重量() | 快遞費(fèi)(元) | ||
, | |||||||
, | |||||||
, |
所有種可能中,有種可能快遞費(fèi)未超過(guò)元,根據(jù)古典概型概率計(jì)算公式,所求概率為.
(2)將題目中的數(shù)據(jù)轉(zhuǎn)化為頻率,得
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) | |||||
頻率 |
若不裁員,則每天可攬件的上限為件,公司每日攬件數(shù)情況如下:
包裹件數(shù) (近似處理) | |||||
實(shí)際攬件數(shù) | |||||
頻率 | |||||
平均攬件數(shù) |
|
故公司平均每日利潤(rùn)為(元);
若裁員人,則每天可攬件的上限為件,公司每日攬件數(shù)情況如下:
包裹件數(shù) (近似處理) | |||||
實(shí)際攬件數(shù) | |||||
頻率 | |||||
平均攬件數(shù) |
|
故公司平均每日利潤(rùn)為(元).
故公司將前臺(tái)工作人員裁員人對(duì)提高公司利潤(rùn)不利.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一舉行了一次數(shù)學(xué)競(jìng)賽,為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為)作為樣本(樣本容量)進(jìn)行統(tǒng)計(jì),按照、、、、的分組作出頻率分布直方圖,已知得分在、的頻數(shù)分別為、.
(1)求樣本容量和頻率分布直方圖中的、的值;
(2)估計(jì)本次競(jìng)賽學(xué)生成績(jī)的眾數(shù)、中位數(shù)、平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到定點(diǎn)的距離與它到直線的距離相等.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)動(dòng)直線與曲線相切于點(diǎn),與直線相交于點(diǎn).
證明:以為直徑的圓恒過(guò)軸上某定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和滿足 .
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,
(I)求數(shù)列的前項(xiàng)和;
(II)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前項(xiàng)和為,且成等比數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)若,為數(shù)列的前項(xiàng)和.若對(duì)于任意的,都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知稱為,的二維平方平均數(shù),稱為,的二維算術(shù)平均數(shù),稱為,的二維幾何平均數(shù),稱為,的二維調(diào)和平均數(shù),其中,均為正數(shù).
(1)試判斷與的大小,并證明你的猜想.
(2)令,,試判斷與的大小,并證明你的猜想.
(3)令,,,試判斷、、三者之間的大小關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).
(I)證明:CE∥平面PAB;
(II)求直線CE與平面PBC所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M:,直線l:,下列四個(gè)選項(xiàng),其中正確的是( )
A.對(duì)任意實(shí)數(shù)k與θ,直線l和圓M有公共點(diǎn)
B.存在實(shí)數(shù)k與θ,直線l和圓M相離
C.對(duì)任意實(shí)數(shù)k,必存在實(shí)數(shù)θ,使得直線l與圓M相切
D.對(duì)任意實(shí)數(shù)θ,必存在實(shí)數(shù)k,使得直線l與圓M相切
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,合肥一中積極開(kāi)展美麗校園建設(shè),現(xiàn)擬在邊長(zhǎng)為0.6千米的正方形地塊上劃出一片三角形地塊建設(shè)小型生態(tài)園,點(diǎn)分別在邊上.
(1)當(dāng)點(diǎn)分別時(shí)邊中點(diǎn)和靠近的三等分點(diǎn)時(shí),求的余弦值;
(2)實(shí)地勘察后發(fā)現(xiàn),由于地形等原因,的周長(zhǎng)必須為1.2千米,請(qǐng)研究是否為定值,若是,求此定值,若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com