設(shè)函數(shù)的定義域為,若函數(shù)滿足條件:存在,使上的值域是則稱為“倍縮函數(shù)”,若函數(shù)為“倍縮函數(shù)”,則的范圍是(    )
A.            B.                       D.
A

試題分析:函數(shù)為“倍縮函數(shù)”,且滿足存在,使 上的值域是,上是增函數(shù);

;
方程有兩個不等的實根,且兩根都大于;
設(shè)
有兩個不等的實根,且兩根都大于

解得,故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某加油站擬造如圖所示的鐵皮儲油罐(不計厚度,長度單位:米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,為圓柱的高,為球的半徑,).假設(shè)該儲油罐的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為千元,半球形部分每平方米建造費用為3千元.設(shè)該儲油罐的建造費用為千元.
(1)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2)求該儲油罐的建造費用最小時的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知一容器中有A,B兩種菌,且在任何時刻A,B兩種菌的個數(shù)乘積為定值1010,為了簡單起見,科學(xué)家用PA=lg(nA)來記錄A菌個數(shù)的資料,其中nA為A菌的個數(shù),則下列判斷中正確的個數(shù)為(  )
①PA≥1;
②若今天的PA值比昨天的PA值增加1,則今天的A菌個數(shù)比昨天的A菌個數(shù)多了10個;
③假設(shè)科學(xué)家將B菌的個數(shù)控制為5萬個,則此時5<PA<5.5.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2-2ax+2+b(a≠0),若f(x)在區(qū)間[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)-mx在[2,4]上單調(diào),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,不滿足f(2x)=2f(x)的是(  )
A.f(x)=|x|B.f(x)=x-|x|
C.f(x)=x+1D.f(x)=-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為偶函數(shù).
(1)求的值;
(2)若方程有且只有一個根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f是有序數(shù)對集合上的一個映射,正整數(shù)數(shù)對在映射f下的象為實數(shù)z,記作. 對于任意的正整數(shù),映射由下表給出:








 
__________,使不等式成立的x的集合是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

湛江為建設(shè)國家衛(wèi)生城市,現(xiàn)計劃在相距20 km的赤坎區(qū)(記為A)霞山區(qū)(記為B)兩城區(qū)外以AB為直徑的半圓弧上選擇一點C建造垃圾處理廠,其對市區(qū)的影響度與所選地 
點到市區(qū)的距離有關(guān),對赤坎區(qū)和霞山區(qū)的總影響度為兩市區(qū)的影響度之和,記C點到赤坎區(qū)的距離為x km,建在C處的垃圾處理廠對兩市區(qū)的總影響度為y.統(tǒng)計調(diào)查表明:垃圾處理廠對赤坎區(qū)的影響度與所選地點到赤坎區(qū)的距離的平方成反比,比例系數(shù)為4;對霞山區(qū)的影響度與所選地點到霞山區(qū)的距離的平方成反比,比例系數(shù)為k.當(dāng)垃圾處理廠建在的中點時,對兩市區(qū)的總影響度為0.065.
(1)將y表示成x的函數(shù);
(2)討論(1)中函數(shù)的單調(diào)性,并判斷上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最小?若存在,求出該點到赤坎區(qū)的距離;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)是定義在R上的奇函數(shù),若對于任意給定的不等實數(shù),不等式
恒成立,則不等式的解集為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案