17.函數(shù)y=e|-lnx|-|x-1|的圖象大致是( 。
A.B.C.D.

分析 根據(jù)x的范圍,分類討論即可得到函數(shù)的圖象.

解答 解:當x=1時,y=1-0=1,
當0<x<1時,e|-lnx|>1,0<|x-1|<1,故y>0,
當x>1時,y=e|-lnx|-|x-1|=x-x+1=1,
故選:D

點評 本題考查了函數(shù)圖象的識別,關(guān)鍵是分類討論,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=$\frac{1}{2}$x2-ax+blnx+4在x=1處取得極值$\frac{3}{2}$,則實數(shù)a+b=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖:空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,AD,CD,CB上的點,且EF∥GH,求證:EF∥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點,點F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求證:
(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知二階矩陣M有特征值λ=8及對應(yīng)的一個特征向量$\overrightarrow{e_1}=[\begin{array}{l}1\\ 1\end{array}]$,并且矩陣M將點(-1,3)變換為(0,8).求矩陣M.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.男嬰為24人,女嬰為8人;出生時間在白天的男嬰為31人,女嬰為26人.
(1)將下面的2×2列聯(lián)表補充完整;
出生時間
性別
晚上白天合計
男嬰
女嬰
合計
(2)能否在犯錯誤的概率不超過0.1的前提下認為嬰兒性別與出生時間有關(guān)系?
參考公式:(1)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d);
(2)獨立性檢驗的臨界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.B.5π+6C.3π+6D.4π+6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.化簡:$\sqrt{\frac{1+cosα}{1-cosα}}$+$\sqrt{\frac{1-cosα}{1+cosα}}$(π<α<$\frac{3π}{2}$)=-$\frac{2}{sinα}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)、g(x)、h(x)均為一次函數(shù),若對實數(shù)x滿足:|f(x)|+|g(x)|+h(x)=$\left\{\begin{array}{l}{4x+2}&{x≥2}\\{未知}&{-\frac{1}{2}≤x<2}\\{-2x+4}&{x<-\frac{1}{2}}\end{array}\right.$,則h(x)的解析式為( 。
A.2x+6B.6x-2C.3x-1D.x+3

查看答案和解析>>

同步練習冊答案