已知函數(shù)f(x)=
1
3
x3-
a+1
2
x2+bx+a(a,b∈R),且其導(dǎo)函數(shù)f′(x)的圖象過原點(diǎn).
(1)當(dāng)a=1時,求函數(shù)f(x)的圖象在x=3處的切線方程;
(2)若存在x≤-2,使得f′(x)=-9,求a的最大值.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義,即可求出函數(shù)f(x)的圖象在x=3處的切線方程;
(2)先對函數(shù)f(x)進(jìn)行求導(dǎo),根據(jù)f′(x)=-9建立等量關(guān)系,再結(jié)合基本不等式求出最大值,注意不等式運(yùn)用的條件
解答: 解:f(x)=
1
3
x3-
a+1
2
x2+bx+a,f′(x)=x2-(a+1)x+b
由f′(0)=0得b=0,f′(x)=x(x-a-1).
(1)當(dāng)a=1時,f′(x)=x(x-2).
∴f′(3)=1,f(3)=3,
∴函數(shù)f(x)的圖象在x=3處的切線方程為y-1=3(x-3),即3x-y-8=0;
(2)存在x≤-2,使得f′(x)=x(x-a-1)=-9,
-a-1=-x-
9
x
=(-x)+(-
9
x
)≥6,
∴a≤-7,
當(dāng)且僅當(dāng)x=-3時,a=-7.所以a的最大值為-7.
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)求切線方程,以及基本不等式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是等差數(shù)列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2,求該數(shù)列的通項公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax+b2,a∈R,b∈R.
(Ⅰ)若a從集合{0,1,2,3,4}中任取一個元素,b從集合{0,1,2,3}中任取一個元素,求方程f(x)=0有兩個不相等實(shí)根的概率;
(Ⅱ)若a從區(qū)間[0,3]中任取一個數(shù),b從區(qū)間[0,4]中任取一個數(shù),求方程f(x)=0沒有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在(x-y)10的展開式中,求x7y3的系數(shù)與x3y7的系數(shù)之和;
(2)4位同學(xué)參加某種形式的競賽,競賽規(guī)則規(guī)定:每位同學(xué)必須從甲.乙兩道題中任選一題作答,選甲題答對得100分,答錯得-100分;選乙題答對得90分,答錯得-90分.若4位同學(xué)的總分為0,求這4位同學(xué)不同得分情況的種數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,且c2=a2+b2-ab.
(Ⅰ)若tanA-tanB=
3
3
(1+tanA•tanB),求角B;
(Ⅱ)設(shè)
m
=(sinA,1),
n
=(3,cos2A),試求
m
n
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在海南省第二十四屆科技創(chuàng)新大賽活動中,某同學(xué)為研究“網(wǎng)絡(luò)游戲?qū)Ξ?dāng)代青少年的影響”作了一次調(diào)查,共調(diào)查了50名同學(xué),其中男生26人,有8人不喜歡玩電腦游戲,而調(diào)查的女生中有9人喜歡玩電腦游戲.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)根據(jù)以上數(shù)據(jù),在犯錯誤的概率不超過0.025的前提下,能否認(rèn)為“喜歡玩電腦游戲與性別有關(guān)系”?
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為:
x=
3
cosθ
y=2sinθ
(θ為參數(shù)),以直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(2cosθ-sinθ)=6.
(Ⅰ)試寫出直線l的直角坐標(biāo)方程和曲線C1的普通方程;
(Ⅱ)在曲線C1上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示.在△ABC中∠C=90°,∠A的平分線AE交BA上的高CH于D點(diǎn),過D引AB的平行線交BC于F.求證:BF=EC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對任意平面向量
AB
=(x,y),把
AB
繞其起點(diǎn)沿逆時針方向旋轉(zhuǎn)θ角得到向量:
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時針方向旋轉(zhuǎn)θ角得到點(diǎn)P.
(1)已知平面內(nèi)點(diǎn)A(1,2),點(diǎn)B(-1,2-2
3
),把點(diǎn)B繞點(diǎn)A逆時針方向旋轉(zhuǎn)
π
3
后得到點(diǎn)P的坐標(biāo)是
 

(2)設(shè)平面內(nèi)曲線C:y=-
1
2x
上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿逆時針方向旋轉(zhuǎn)
π
4
后得到的點(diǎn)的軌跡方程是:
 

查看答案和解析>>

同步練習(xí)冊答案