【題目】已知函數(shù),其中為常數(shù).

Ⅰ)若的圖像在處的切線經過點(3,4),求的值;

Ⅱ)若,求證: ;

Ⅲ)當函數(shù)存在三個不同的零點時,求的取值范圍

【答案】1 ;(2)詳見解析;(3 .

【解析】試題分析:(1)根據導數(shù)的幾何意義可得:,再結合斜率公式進而得出的值;(2)表示出,然后構造函數(shù)通過討論函數(shù)的單調性證明;(3)將函數(shù)零點的問題轉化為函數(shù)圖像與軸交點個數(shù)的問題,通過導數(shù)討論函數(shù)的單調性來解決.

試題解析:由題知

2

4

,令

7

時, 單調遞減,

時, ,

時, 9

至多只有一個零點,不合題意; 10

至多只有一個零點,不合題意; 11

此時, 上遞減, 上遞增, 上遞減,所以, 至多有三個零點.因為遞增,所以,又因為,所以,使得,又,所以恰有三個不同零點: ,所以函數(shù)存在三個不同的零點時, 的取值范圍是. 14

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為在橢圓上.

(Ⅰ)求橢圓的方程;

(Ⅱ)過橢圓內一點的直線的斜率為,且與橢圓交于兩點設直線, 為坐標原點)的斜率分別為若對任意,存在實數(shù)使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,側棱垂直于底面, 分別是的中點.

1)求證: 平面平面

2)求證: 平面;

3)求三棱錐體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知數(shù)列的前項和,且

)求數(shù)列的通項公式;

)令,是否存在,使得、、成等比數(shù)列.若存在,求出所有符合條件的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四棱柱的底面邊長為,側棱長為1,求:

(1)直線與直線所成角的余弦值;

(2)平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,,分別為橢圓的左、右焦點.動直線過點,且與橢圓相交于,兩點(直線軸不重合).

(1)若點的坐標為,求點坐標;

(2)點,設直線的斜率分別為,,求證:;

(3)求面積最大時的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是定義在R上的奇函數(shù),,若單調遞減,則不等式的解集為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側棱底面,且, 是棱的中點,點在側棱上運動.

(1)當是棱的中點時,求證: 平面

(2)當直線與平面所成的角的正切值為時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設m,n是兩條不同直線,,,是三個不同平面,給出下列四個命題:①若m⊥n,則m//n;②若//,//,m,則m⊥;③若m//,n//,則m//n;④,,則//.其中正確命題的序號是_______

查看答案和解析>>

同步練習冊答案