分析 (I)利用正方形的性質(zhì)、三角形中位線定理、線面平行的判定定理即可得出.
(Ⅱ)由AC=BC,D為AB中點,可得CD⊥AB;利用線面垂直的判定定理可得:CC1⊥平面ABC.又可得BB1⊥CD.可得CD⊥平面AA1B1B,即可證明:平面ACD⊥平面AA1B1B.
(Ⅲ)作DH⊥AC于H,由于 CC1⊥平面ABC,可得DH⊥平面ACC1A1.利用V=$\frac{1}{3}{S}_{△{A}_{1}{C}_{1}C}•DH$即可得出.
解答 (Ⅰ)證明:連接AC1,設(shè)AC1∩A1C=E,連接DE,
∵AC=AA1=1=CC1=A1C1,AA1⊥AC,
∴ACC1A1是正方形,
∴E是AC1中點,又D為AB中點,
∴ED∥BC1,
又ED?平面A1CD,BC1?平面A1CD,
∴BC1∥平面A1CD.
(Ⅱ)證明:∵AC=BC,D為AB中點,
∴CD⊥AB,
∵CC1⊥AC,CC1⊥BC,且相交,
∴CC1⊥平面ABC.
∵BB1∥CC1,
∴BB1⊥平面ABC,CD?平面ABC,
∴BB1⊥CD.
∴CD⊥平面AA1B1B,
∵CD?平面ACD,
∴平面ACD⊥平面AA1D1B.
(Ⅲ)解:作DH⊥AC于H,由于 CC1⊥平面ABC.
∴CC1⊥DH,又DH⊥AC,∴DH⊥平面ACC1A1.
∴DH即為D到平面平面ACC1A1的距離.
又∵平面平面ACC1A1⊥平面CBB1C1且交線是CC1,BC?平面CBB1C1,BC⊥CC1,
∴BC⊥平面平面ACC1A1.∴BC⊥AC,而DH⊥AC,且BC=1,
∴DH=$\frac{1}{2}$,
V=$\frac{1}{3}{S}_{△{A}_{1}{C}_{1}C}•DH$=$\frac{1}{3}×\frac{1}{2}×\frac{1}{2}$=$\frac{1}{12}$.
點評 本題考查了正方形的性質(zhì)、線面面面平行垂直的判定與性質(zhì)定理、三角形中位線定理、三棱錐的體積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于直線x=$\frac{π}{12}$對稱 | B. | 關(guān)于直線x=$\frac{5π}{12}$對稱 | ||
C. | 關(guān)于點($\frac{π}{12}$,0)對稱 | D. | 關(guān)于點($\frac{5π}{12}$,0)對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$a3 | B. | $\frac{{\sqrt{2}}}{12}$a3 | C. | $\frac{{\sqrt{3}}}{12}$a3 | D. | $\frac{{\sqrt{3}}}{6}$a3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com