給定橢圓: ,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個(gè)焦點(diǎn)為,且其短軸上的一個(gè)端點(diǎn)到的距離為.
(Ⅰ)求橢圓的方程和其“準(zhǔn)圓”方程;
(Ⅱ)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)作直線,使得與橢圓都只有一個(gè)交點(diǎn),試判斷是否垂直,并說明理由.
(Ⅰ),;(Ⅱ)垂直.
解析試題分析:(Ⅰ)利用焦點(diǎn)坐標(biāo)求出,利用短軸上的一個(gè)端點(diǎn)到的距離為,求出,解出,,寫出橢圓方程,通過得到的,求出準(zhǔn)圓的半徑,直接寫出準(zhǔn)圓方程;(Ⅱ)分情況討論:①當(dāng)中有一條直線的斜率不存在時(shí),②當(dāng)的斜率都存在時(shí).
試題解析:(Ⅰ)由題意可知,,則,,
所以橢圓方程為. 2分
易知準(zhǔn)圓半徑為,
則準(zhǔn)圓方程為. 4分
(Ⅱ)①當(dāng)中有一條直線的斜率不存在時(shí),
不妨設(shè)的斜率不存在,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1c/9/18cbd2.png" style="vertical-align:middle;" />與橢圓只有一個(gè)公共點(diǎn),則其方程為,
當(dāng)的方程為時(shí),此時(shí)與準(zhǔn)圓交于點(diǎn),,
此時(shí)經(jīng)過點(diǎn)或且與橢圓只有一個(gè)公共點(diǎn)的直線是或,
即為或,顯然直線垂直; 6分
同理可證直線的方程為時(shí),直線也垂直. 7分
②當(dāng)的斜率都存在時(shí),設(shè)點(diǎn),其中.
設(shè)經(jīng)過點(diǎn)與橢圓只有一個(gè)公共點(diǎn)的直線為,
由消去,得.
由化簡整理得,. 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ab/7/wqzdg1.png" style="vertical-align:middle;" />,
所以有. 10分
設(shè)直線的斜率分別為,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/38/0/vuki72.png" style="vertical-align:middle;" />與橢圓只有一個(gè)公共點(diǎn),
所以滿足方程,
所以,即垂直. 12分
綜合①②知,垂直. 13分
考點(diǎn):1.橢圓方程;2.分類討論思想解題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的離心率為,過右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有=+成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點(diǎn)P,過P作直線與⊙O分別交于E,F(xiàn)兩點(diǎn),連結(jié)AE,AF分別與CD交于G、H
(Ⅰ)設(shè)EF中點(diǎn)為,求證:O、、B、P四點(diǎn)共圓
(Ⅱ)求證:OG =OH.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四邊形ABCD的四個(gè)頂點(diǎn)都在拋物線上,A,C關(guān)于軸對(duì)稱,BD平行于拋物線在點(diǎn)C處的切線。
(Ⅰ)證明:AC平分;
(Ⅱ)若點(diǎn)A坐標(biāo)為,四邊形ABCD的面積為4,求直線BD的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
經(jīng)過點(diǎn)且與直線相切的動(dòng)圓的圓心軌跡為.點(diǎn)、在軌跡上,且關(guān)于軸對(duì)稱,過線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使直線與軌跡在點(diǎn)處的切線平行,設(shè)直線與軌跡交于點(diǎn)、.
(1)求軌跡的方程;
(2)證明:;
(3)若點(diǎn)到直線的距離等于,且△的面積為20,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長軸,動(dòng)直線垂直于點(diǎn),
線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(Ⅲ)設(shè)與軸交于點(diǎn),不同的兩點(diǎn)在上,且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的左頂點(diǎn)為,是橢圓上異于點(diǎn)的任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱.
(Ⅰ)若點(diǎn)的坐標(biāo)為,求的值;
(Ⅱ)若橢圓上存在點(diǎn),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定圓的圓心為,動(dòng)圓過點(diǎn),且和圓相切,動(dòng)圓的圓心的軌跡記為.
(Ⅰ)求曲線的方程;
(Ⅱ)若點(diǎn)為曲線上一點(diǎn),試探究直線:與曲線是否存在交點(diǎn)? 若存在,求出交點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系xOy中,過橢圓M:右焦點(diǎn)的直線交于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為.
(Ι)求M的方程;
(Ⅱ)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線CD⊥AB,求四邊形面積的最大值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com