【題目】如圖,四邊形中, 為正三角形, , 中心點(diǎn),將沿邊折起,使點(diǎn)至點(diǎn),已知與平面所成的角為.

(1)求證:平面平面;

(2)求已知二面角的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)可證得平面,由面面垂直的判定定理得平面平面.

(2)過的垂線,垂足為,則垂直平面, ,以后, 軸,過垂直于平面向上的直線為軸建立如圖所示空間直角坐標(biāo)系,即可求得二面角的余弦值.

試題解析:

(1)易知的中點(diǎn),則,

平面,所以平面,

平面, 平面平面.

(2)過的垂線,垂足為,則垂直平面 ,

后, 軸,過垂直于平面向上的直線為軸建立如圖所示空間直角坐標(biāo)系,則, ,

易知平面的法向量為,

, ,

設(shè)平面的法向量為,

則由,取,

,

二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB分別是橢圓的左、右端點(diǎn),F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于x軸上方,PAPF.

1點(diǎn)P的坐標(biāo);

2設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線AP的距離等于MB,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三棱柱中,,點(diǎn)D是BC的中點(diǎn),點(diǎn)上,且

1)求證: 平面

2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 為自然對(duì)數(shù)的底數(shù).

(Ⅰ)求曲線處的切線方程;

(Ⅱ)關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)關(guān)于的方程有兩個(gè)實(shí)根, ,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),動(dòng)點(diǎn)與兩定點(diǎn), 連線的斜率之積為.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)點(diǎn), 是軌跡上相異的兩點(diǎn).

(Ⅰ)過點(diǎn), 分別作拋物線的切線, 兩條切線相交于點(diǎn),證明: ;

(Ⅱ)若直線與直線的斜率之積為,證明: 為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=tx2-(22t+60)x+144t(x>0).

(1)要使f(x)≥0恒成立,求t的最小值;

(2)令f(x)=0,求使t>20成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正四棱錐中, 分別是

的中點(diǎn),動(dòng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),下列結(jié)論中不恒成立的是(  )

A. 異面 B. ∥面

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)事件表示“關(guān)于的方程有實(shí)數(shù)根”.

(1)若、,求事件發(fā)生的概率

(2)若、,求事件發(fā)生的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)設(shè)可求導(dǎo)數(shù),且它的導(dǎo)函數(shù)仍可求導(dǎo)數(shù),則再次求導(dǎo)所得函數(shù)稱為原函數(shù)的二階函數(shù),記為,利用二階導(dǎo)函數(shù)可以判斷一個(gè)函數(shù)的凹凸性.一個(gè)二階可導(dǎo)的函數(shù)在區(qū)間上是凸函數(shù)的充要條件是這個(gè)函數(shù)在的二階導(dǎo)函數(shù)非負(fù).

不是凸函數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案