已知函數(shù)f(x)=4cosxsin(x+
π
6
)+k,其中k為常數(shù).
(1)若x∈[0,
π
2
],f(x)的最大值為4,求k的值; 
(2)將f(x)圖象上的點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的λ(λ>1)倍,所得函數(shù)為g(x),設(shè)A、B是g(x)圖象上任意兩個(gè)相鄰的最低點(diǎn),線段AB與g(x)圖象所圍成的封閉圖形的面為6π,點(diǎn)C是g(x)圖象與y軸的交點(diǎn),D是g(x)圖象在y軸右側(cè)且離y軸最近的一個(gè)對(duì)稱中心,當(dāng)
OC
OD
<0(O是坐標(biāo)原點(diǎn))時(shí),求k的取值范圍.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,平面向量數(shù)量積的運(yùn)算
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)先化簡(jiǎn)函數(shù)的解析式為f(x)=4cosxsin(x+
π
6
)+k=2sin(2x+
π
6
)+k+1,再求出最值,令其等于4,即可得到k的方程求出它的值.
(2)本小題可由A、B是g(x)圖象上任意兩個(gè)相鄰的最低點(diǎn),線段AB與g(x)圖象所圍成的封閉圖形的面為6π這一條件入手求出ω的值,由此可以確定出函數(shù)圖象的大體位置,再由
OC
OD
<0得出k的不等式,解出其范圍即可.
解答: 解:(1)f(x)=4cosxsin(x+
π
6
)+k=2sin(2x+
π
6
)+k+1.
x∈[0,
π
2
],則2x+
π
6
∈[
π
6
6
],可得sin(2x+
π
6
)∈[-
1
2
,1].
又x∈[0,
π
2
],f(x)的最大值為4,可得k+3=4,解得k=1.
(2)由(1)知,f(x)=4cosxsin(x+
π
6
)+k=2sin(2x+
π
6
)+k+1.
∵A、B是g(x)圖象上任意兩個(gè)相鄰的最低點(diǎn),線段AB與g(x)圖象所圍成的封閉圖形的面為6π,
∴|AB|×4=6π,解得|AB|=
3
2
π
,即T=
3
2
π
,故有ω=
3
2
π
=
4
3
,即g(x)=2sin(
4
3
x+
π
6
)+k+1
又點(diǎn)C是g(x)圖象與y軸的交點(diǎn),D是g(x)圖象在y軸右側(cè)且離y軸最近的一個(gè)對(duì)稱中心,
OC
OD
<0
可得出k+1>0,故有k>-1.
k的取值范圍k>-1.
點(diǎn)評(píng):本題考查三角恒等變換與數(shù)量積的意義,三角恒等變換是高考重要內(nèi)容,它與向量的結(jié)合是近年高考中常出現(xiàn)的題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
(1+sinθ+cosθ)(sin
θ
2
-cos
θ
2
)
2+2cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

新能源汽車是指利用除汽油、燃油之外的其他能源的汽車,包括燃料電池汽車、混合動(dòng)力汽車、氫能源動(dòng)力汽車和太陽(yáng)能汽車等,其廢氣排放量比較低.為了配合我國(guó)“節(jié)能減排”戰(zhàn)略,某汽車廠決定轉(zhuǎn)型生產(chǎn)新能源汽車中的燃料電池轎車、混合動(dòng)力轎車和氫能源動(dòng)力轎車,每類轎車均有標(biāo)準(zhǔn)型和豪華型兩種型號(hào),某月的產(chǎn)量如下表(單位:輛):
燃料電池轎車混合動(dòng)力轎車氫能源動(dòng)力轎車
標(biāo)準(zhǔn)型100150y
豪華型300450600
按能源類型用分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取50輛,其中燃料電池轎車有10輛.
(1)求y的值;
(2)用分層抽樣的方法在氫能源動(dòng)力轎車中抽取一個(gè)容量為5的樣本,將該樣本看做一個(gè)總體,從中任取2輛轎車,求至少有1輛標(biāo)準(zhǔn)型轎車的概率;
(3)用隨機(jī)抽樣的方法從混合動(dòng)力標(biāo)準(zhǔn)型轎車中抽取10輛進(jìn)行質(zhì)量檢測(cè),經(jīng)檢測(cè)他們的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4,把這10輛轎車的得分看作一個(gè)樣本,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過(guò)0.4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知條件p:{x|x2+x-6=0},條件q:{x|mx+1=0},且q是p的充分不必要條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x+1)e-x(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)φ(x)=xf(x)+tf′(x)+e-x,存在x1,x2∈[0,1],使得成立2φ(x1)<φ(x2)成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)的部分圖象.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)若函數(shù)f(x)滿足方程f(x)=a(0<a<1),求在[0,2π]內(nèi)的所有實(shí)數(shù)根之和;
(Ⅲ)把函數(shù)y=f(x)的圖象的周期擴(kuò)大為原來(lái)的兩倍,然后向右平移
3
個(gè)單位,再把縱坐標(biāo)伸長(zhǎng)為原來(lái)的兩倍,最后向上平移一個(gè)單位得到函數(shù)y=g(x)的圖象.若對(duì)任意的0≤m≤3,方程|g(kx)|=m在區(qū)間[0,
6
]上至多有一個(gè)解,求正數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點(diǎn)E為AB上一點(diǎn).
(1)當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),求證:BD1∥平面A1DE;
(2)求點(diǎn)A1到平面BDD1的距離;
(3)當(dāng)
AE
=
1
2
EB
時(shí),求二面角D1-EC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a3=6,a5+a7=24.
(1)求an和Sn
(2)設(shè)bn=(
2
 an,求數(shù)列{bn}的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列函數(shù):
①f(x)=x 
1
2
;
②f(x)=x2;
③f(x)=2x;
④f(x)=log2x.
則滿足關(guān)系式f′(2)>f(3)-f(2)>f′(3)的函數(shù)的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案