已知f(x)的定義域是[0,4],則f(x+1)+f(x-1)的定義域
 
;f(x+1)的定義域是[0,4],則f(2x-1)的定義域為
 
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意得不等式組,解出即可;(2)先求出1≤x+1≤5,得到函數(shù)f(x)的定義域,從而1≤2x-1≤5,解出即可.
解答: 解:(1)由題意得:
0≤x+1≤4
0≤x-1≤4
,解得:1≤x≤3;
(2)∵0≤x≤4,∴1≤x+1≤5,
∴1≤2x-1≤5,解得:1≤x≤3;
故答案為:[1,3],[1,3].
點評:本題考查了復(fù)合函數(shù)的定義域問題,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在(-∞,+∞)上的函數(shù)f(x)滿足f(x+2)=f(x).
(1)若f(x)是偶函數(shù),且當(dāng)x∈(0,1)時,f(x)=x+1,求f(x)在(1,2)上的解析式;
(2)若f(1+x)=f(1-x),判斷函數(shù)f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD是直角梯形,AD∥BC,AB⊥BC,AD=2,AB=3,BC=BE=7,△DCE是邊長為6的正三角形.
(1)求證:平面DEC⊥平面BDE;
(2)求二面角C-BE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD的邊長為2,∠BAD=60°,M為AB邊上不與端點重合的動點,且CM與DA分別延長后交于點N,若以菱形的對角線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,并設(shè)BM=2t (0<t<1).
(Ⅰ)試用t表示
DM
BN
,并求它們所成角的大;
(Ⅱ)設(shè)f(t)=
DM
BN
,g(t)=at+4-2a(a>0),分別根據(jù)以下條件,求出實數(shù)a的取值范圍:
①存在t1,t2∈(0,1),使得
2
f(t1)
=g(t2);
②對任意t1∈(0,1),恒存在t2∈(0,1),使得
2
f(t1)
=g(t2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)+x2是奇函數(shù),且f(1)=1,若g(x)=f(x)+2,則g(-1)=( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=an+2n+1,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=-
1
4
,an=1-
1
an-1
(n>1),則a2014的值為( 。
A、-
1
4
B、5
C、
4
5
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f′(x0)=-3,則
lim
h→∞
f(x0-3h)-f(x0)
h
=( 。
A、-3B、-6C、9D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},則M∩N=
 

查看答案和解析>>

同步練習(xí)冊答案