橢圓上一點M到焦點的距離為2,N為的中點,O為坐標原點,則(    )

A. 2        B. 4       C.6         D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:


已知角的頂點與原點重合,始邊與x軸的正半軸重合,終邊在直線y =2 x上,則  (   )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

A.                B.               C.               D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


 “”是“”的(    )

A.充分而不必要條件          B.必要而不充分條件

 C. 充分必要條件             D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知四棱錐的底面為直角梯形,,,,

,M為PB中點.

(1) 證明:

(2) 求AC與PB所成的角的余弦值;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


將八進制數(shù)化為二進制數(shù)為(    )

A.        B.

C.    D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知拋物線C:上一動點M,設M到拋物線C外一定點A(6,12)的距離為,M到定直線的距離為,若+的最小值為14,則拋物線C的方程為____________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


A、    B、  C、   D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


設數(shù)列的前項積為,且 .

(1)  求證:數(shù)列是等差數(shù)列  (2)設,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


將十進制數(shù)45化為二進制數(shù)為              

查看答案和解析>>

同步練習冊答案