【題目】已知數(shù)列的前n項(xiàng)和為,把滿足條件的所有數(shù)列構(gòu)成的集合記為.
(1)若數(shù)列的通項(xiàng)為,則是否屬于?
(2)若數(shù)列是等差數(shù)列,且,求的取值范圍;
(3)若數(shù)列的各項(xiàng)均為正數(shù),且,數(shù)列中是否存在無(wú)窮多項(xiàng)依次成等差數(shù)列,若存在,給出一個(gè)數(shù)列的通項(xiàng);若不存在,說(shuō)明理由.
【答案】(1);(2);(3)數(shù)列中是不存在無(wú)窮多項(xiàng)依次成等差數(shù)列,理由詳見(jiàn)解析.
【解析】
(1)由題意可得,證明即后即可得解;
(2)由題意可得,當(dāng)時(shí),;結(jié)合二次函數(shù)的性質(zhì)可得;即可得;進(jìn)而可得,即可得解;
(3)轉(zhuǎn)化條件得即,假設(shè)數(shù)列中存在無(wú)窮多項(xiàng)依次成等差數(shù)列,不妨設(shè)該等差數(shù)列的第項(xiàng)為(為常數(shù)),則存在,,使得,設(shè),,,作差后可得即當(dāng)時(shí),,進(jìn)而可得不等式有無(wú)窮多個(gè)解,顯然不成立,即可得解.
(1)因?yàn)?/span>,所以,
所以,
所以,即;
(2)設(shè)的公差為,因?yàn)?/span>,
所以(*)
特別的當(dāng)時(shí),,即,
由(*)得,
整理得,
因?yàn)樯鲜霾坏仁綄?duì)一切恒成立,所以必有,解得,
又,所以,
于是,即,
所以即;
(3)由得,所以,即,
所以,從而有,
又,所以,即,
又,,所以有,
所以,
假設(shè)數(shù)列中存在無(wú)窮多項(xiàng)依次成等差數(shù)列,
不妨設(shè)該等差數(shù)列的第項(xiàng)為(為常數(shù)),
則存在,,使得,即,
設(shè),,,
則,
即,
于是當(dāng)時(shí),,
從而有:當(dāng)時(shí),即,
于是當(dāng)時(shí),關(guān)于的不等式有無(wú)窮多個(gè)解,顯然不成立,
因此數(shù)列中是不存在無(wú)窮多項(xiàng)依次成等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某飲料廠生產(chǎn)兩種飲料.生產(chǎn)1桶飲料,需該特產(chǎn)原料100公斤,需時(shí)間3小時(shí);生產(chǎn)1桶 飲料需該特產(chǎn)原料100公斤,需時(shí)間1小時(shí),每天飲料的產(chǎn)量不超過(guò)飲料產(chǎn)量的2倍,每天生產(chǎn)兩種飲料所需該特產(chǎn)原料的總量至多750公斤,每天生產(chǎn)飲料的時(shí)間不低于生產(chǎn)飲料的時(shí)間,每桶飲料的利潤(rùn)是每桶飲料利潤(rùn)的1.5倍,若該飲料廠每天生產(chǎn)飲料桶,飲料桶時(shí)()利潤(rùn)最大,則_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)在平面外,過(guò)點(diǎn)作面的垂線,則稱(chēng)垂足為點(diǎn)在平面內(nèi)的正投影,記為.如圖,在棱長(zhǎng)為的正方體中,記平面為,平面為,點(diǎn)是棱上一動(dòng)點(diǎn)(與不重合),,.給出下列三個(gè)結(jié)論:①線段長(zhǎng)度的取值范圍是;②存在點(diǎn)使得平面;③存在點(diǎn)使得.其中正確結(jié)論的序號(hào)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,,函數(shù).
(1)求函數(shù)的最小正周期與圖象的對(duì)稱(chēng)軸方程;
(2)若,,函數(shù)的最小值是,最大值是2,求實(shí)數(shù),的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,其中e是自然對(duì)數(shù)的底數(shù).
(1)若曲線在處的切線與曲線也相切.
①求實(shí)數(shù)a的值;
②求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),求證:當(dāng)時(shí),恰好有2個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐ABCD中,和都是等邊三角形,平面PAD平面ABCD,且,.
(1)求證:CDPA;
(2)E,F分別是棱PA,AD上的點(diǎn),當(dāng)平面BEF//平面PCD時(shí),求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,,為橢圓上兩點(diǎn),圓.
(1)若軸,且滿足直線與圓相切,求圓的方程;
(2)若圓的半徑為2,點(diǎn),滿足,求直線被圓截得弦長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,底面ABC,,,,D,E分別為棱BC,PC的中點(diǎn),點(diǎn)F在棱PA上,設(shè).
(1)當(dāng)時(shí),求異面直線DF與BE所成角的余弦值;
(2)試確定t的值,使二面角C-EF-D的平面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的極坐標(biāo)方程為。
(1)求直線的普通方程和圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于,兩點(diǎn),若點(diǎn)的坐標(biāo)為,求。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com