【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個零點,證明.
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)分兩種情況討論的范圍,求出,分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(2)函數(shù)有兩個零點分別為,不妨設(shè)則, , ,原不等式等價于令,只需證明證,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出的最大值即可得結(jié)論.
試題解析:1)
當(dāng)時, ,所以在上單調(diào)遞減;
當(dāng)時, ,得
都有, 在上單調(diào)遞減;
都有, 在上單調(diào)遞增.
綜上:當(dāng)時, 在上單調(diào)遞減,無單調(diào)遞增區(qū)間;
當(dāng)時, 在單調(diào)遞減, 在上單調(diào)遞增.
(2)函數(shù)有兩個零點分別為,不妨設(shè)則
,
要證:
只需證: 只需證:
只需證:
只需證:
只需證:
令,即證
設(shè),則,
即函數(shù)在單調(diào)遞減
則
即得
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:,命題:
(1)若是的充分條件,求實數(shù)的取值范圍;
(2)若,為真命題,為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,某市出租車的計價標(biāo)準(zhǔn)是:路程以內(nèi)(含)按起步價8元收取,超過后的路程按1.9元收取,但超過后的路程需加收的返空費(即單價為元)
(1)若,將乘客搭乘一次出租車的費用(單位:元)表示為行程(單位:)的分段函數(shù);
(2)某乘客行程為,他準(zhǔn)備先乘一輛出租車行駛,然后再換乘另一輛出租車完成余下路程,請問:他這樣做是否比只乘一輛出租車完成全程更省錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域為的函數(shù)滿足:對于任意的實數(shù)都有 成立,且當(dāng)時,.
(Ⅰ)判斷函數(shù)的奇偶性,并證明你的結(jié)論;
(Ⅱ)證明在上為減函數(shù);
(Ⅲ)若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從原點向圓 作兩條切線,切點分別為,,記切線,的斜率分別為,.
(Ⅰ)若圓心,求兩切線,的方程;
(Ⅱ)若,求圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點、的坐標(biāo)分別是,,直線,相交于點,且它們的斜率之積為.
(1)求動點的軌跡方程;
(2)若過點的直線交動點的軌跡于、兩點, 且為線段,的中點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=-x2+ax.
(1)若a=-2,求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)為R上的單調(diào)減函數(shù),
①求a的取值范圍;
②若對任意實數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列說法:
①命題“x0∈R,x+1>3x0”的否定是“x∈R,x2+1<3x”;
②已知p,q為兩個命題,若“p∨q”為假命題,則“¬p∧¬q”為真命題
③“a>2”是“a>5”的充分不必要條件
④“若xy=0,則x=0且y=0”的逆否命題為真命題
其中正確說法的個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com