5.若實數(shù)x,y滿足$\left\{\begin{array}{l}x+y-4≤0\\ 2x-y-4≤0\\ x-y+2≥0\end{array}\right.$,則目標(biāo)函數(shù)z=2x+3y的最大值為( 。
A.11B.24C.36D.49

分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:作出不等式組$\left\{\begin{array}{l}x+y-4≤0\\ 2x-y-4≤0\\ x-y+2≥0\end{array}\right.$對應(yīng)的平面區(qū)域如圖
由z=2x+3y得y=-$\frac{2}{3}$x+$\frac{z}{3}$,
平移直線y=-$\frac{2}{3}$x+$\frac{z}{3}$,
由圖象可知當(dāng)直線y=-$\frac{2}{3}$x+$\frac{z}{3}$,
經(jīng)過點A時,
直線y=-$\frac{2}{3}$x+$\frac{z}{3}$,
的截距最大,此時z最大,
由$\left\{\begin{array}{l}x+y-4=0\\ x-y+2=0\end{array}\right.$,解得$\left\{\begin{array}{l}x=1\\ y=3\end{array}\right.$,
即A(1,3),
此時z=2×1+3×3=11,
故選:A.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)函數(shù)f(x)是R上的偶函數(shù),且當(dāng)x>0時,函數(shù)的解析式為f(x)=$\frac{2}{x}$-1.求當(dāng)x<0時,函數(shù)的解析式.
(2)若f(x)滿足關(guān)系式$f(x)+2f(\frac{1}{x})=3x$,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.不等式(x+5)(3-2x)≥6的解集是( 。
A.{x|-$\frac{9}{2}$≤x≤1}B.{x|-1≤x≤$\frac{9}{2}$}C.{x|x≤-$\frac{9}{2}$或x≥1}D.{x|x≤-1或x≥$\frac{9}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a,b∈R,那么“a2>b2”是“a>|b|”的(  )
A.充分非必要條件B.必要非充分條件
C.充分必要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$f(x)=-\frac{1}{1+x}$在x∈[1,+∞)上的值域為(  )
A.$({-∞,-\frac{1}{2}}]$B.$[{-\frac{1}{2},+∞})$C.$[{-\frac{1}{2},0})$D.$[-\frac{1}{2},0]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\frac{1}{x-1},x<0}\\{(x-1)^{2},x≥0}\end{array}\right.$,若直線y=m與函數(shù)f(x)的圖象有三個不同的交點,則實數(shù)m的取值范圍(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是同一個平面α內(nèi)的兩個向量,則( 。
A.平面α內(nèi)任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R)
B.若存在實數(shù)λ1,λ2,使λ1$\overrightarrow{{e}_{1}}$+λ2$\overrightarrow{{e}_{2}}$=0,則λ12=0
C.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共線,則空間任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R)
D.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共線,則平面任一向量$\overrightarrow{a}$,都有$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ,μ∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某賽季甲,乙兩名籃球運動員每場比賽得分可用莖葉圖表示如下:
(1)求甲運動員成績的中位數(shù);
(2)估計乙運動員在一場比賽中得分落在區(qū)間[10,40]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖為函數(shù)f(x)=Msin(ωx+φ)(M>0,ω>0,0≤φ≤π)的部分圖象,若點A、B分別為函數(shù)f(x)的最高點與最低點,且|AB|=5,那么f(-1)=(  )
A.2B.$\sqrt{3}$C.-$\sqrt{3}$D.-2

查看答案和解析>>

同步練習(xí)冊答案