【題目】近年來(lái)城市“共享單車(chē)”的投放在我國(guó)各地迅猛發(fā)展,“共享單車(chē)”為人們出行提供了很大的便利,但也給城市的管理帶來(lái)了一些困難,現(xiàn)某城市為了解人們對(duì)“共享單車(chē)”投放的認(rèn)可度,對(duì)年齡段的人群隨機(jī)抽取人進(jìn)行了一次“你是否贊成投放共享單車(chē)”的問(wèn)卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

(1)補(bǔ)全頻率分布直方圖,并求的值;

(2)在第四、五、六組“贊成投放共享單車(chē)”的人中,用分層抽樣的方法抽取7人參加“共享單車(chē)”騎車(chē)體驗(yàn)活動(dòng),求第四、五、六組應(yīng)分別抽取的人數(shù);

(3)在(2)中抽取的7人中隨機(jī)選派2人作為正副隊(duì)長(zhǎng),求所選派的2人沒(méi)有第四組人的概率.

【答案】(1)見(jiàn)解析;(2)4人,2人,1人;(3)

【解析】試題分析:(1)由頻率表中第五組數(shù)據(jù)可知,第五組總?cè)藬?shù)為100,結(jié)合頻率分布直方圖可得,根據(jù)第二組求出;(2)根據(jù)分層抽樣原理可知,第四、五、六組分別取的人數(shù)為4人,2人,1人;(3)利用列舉法列出從7人中隨機(jī)抽取2名領(lǐng)隊(duì)所有可能的結(jié)果有21種,其中恰好沒(méi)有第四組人的所有可能結(jié)果4種,故可得結(jié)果.

試題解析:(1)畫(huà)圖(見(jiàn)下圖)由頻率表中第五組數(shù)據(jù)可知,第五組總?cè)藬?shù)為,再結(jié)合頻率分布直方圖

可知所以,第二組的頻率為,所以

(2)因?yàn)榈谒、五、六組“喜歡騎車(chē)”的人數(shù)共有105人,由分層抽樣原理可知,第四、五、六組分別取的人數(shù)為4人,2人,1人.

(3)設(shè)第四組4人為:,第五組2人為:,第六組1人為:.則從7人中隨機(jī)抽取2名領(lǐng)隊(duì)所有可能的結(jié)果為:,,,, ,,,,,,,,,共21種; 其中恰好沒(méi)有第四組人的所有可能結(jié)果為:,共3種;所以所抽取的2人中恰好沒(méi)有第四組人的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蛋糕店出售一種蛋糕,這種蛋糕的保質(zhì)期很短,必須當(dāng)天賣(mài)掉,否則容易變質(zhì),該蛋糕店每天以每塊16元的成本價(jià)格制作這種蛋糕若干塊,然后以每塊26元的價(jià)格出售,如果當(dāng)天賣(mài)不完,剩下的蛋糕只能以每塊6元低價(jià)出售.蛋糕店記錄了100天該種蛋糕的日需求量n(單位:塊,n∈N*)整理得如圖:
(1)若該蛋糕店某一天制作19塊蛋糕,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n的函數(shù)解析式;
(2)若要求出售“出售的蛋糕塊數(shù)不小于n”的頻率不小于0.4,求n的最大值.
(3)若該蛋糕店這100天每天都制作19塊蛋糕,試計(jì)算這100天蛋糕店所獲利潤(rùn)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x)是定義在[﹣4,4]上的偶函數(shù),且f(x)= ,則不等式(1﹣2x)g(log2x)<0的解集用區(qū)間表示為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集為R,函數(shù)f(x)= 的定義域?yàn)镸,則RM=(
A.(﹣∞,﹣1)
B.[1,+∞)
C.(1,+∞)
D.(﹣∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果命題 p(n) 對(duì) n=k 成立,那么它對(duì) n=k+2 也成立,又若 p(n) 對(duì) n=2 成立,則下列結(jié)論正確的是( )
A.p(n) 對(duì)所有自然數(shù) n 成立
B.p(n) 對(duì)所有正偶數(shù) n 成立
C.p(n) 對(duì)所有正奇數(shù) n 成立
D.p(n) 對(duì)所有大于1的自然數(shù) n 成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,數(shù)列{an} 的前 n 項(xiàng)的和記為 Sn .S
(1)求S1,S2,S3的值,猜想Sn的表達(dá)式;
(2)請(qǐng)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .
(1)若不等式 恒成立,求 a 的取值范圍;
(2)當(dāng) a=2 時(shí),求:不等式 的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=f(x)是定義在a,b上的增函數(shù),其中a,b∈R且0<b<﹣a,已知y=f(x)無(wú)零點(diǎn),設(shè)函數(shù)F(x)=f2(x)+f2(﹣x),則對(duì)于F(x)有以下四個(gè)說(shuō)法:
①定義域是[﹣b,b];②是偶函數(shù);③最小值是0;④在定義域內(nèi)單調(diào)遞增.
其中正確的有(填入你認(rèn)為正確的所有序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn) 的四個(gè)頂點(diǎn)構(gòu)成的四邊形面積為.

(1)求橢圓的方程;

(2)在橢圓上是否存在相異兩點(diǎn),使其滿(mǎn)足:①直線(xiàn)與直線(xiàn)的斜率互為相反數(shù);②線(xiàn)段的中點(diǎn)在軸上,若存在,求出的平分線(xiàn)與橢圓相交所得弦的弦長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案