【題目】設(shè)動(dòng)點(diǎn)是圓上任意一點(diǎn),過(guò)軸的垂線,垂足為,若點(diǎn)在線段上,且滿足

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)直線交于 兩點(diǎn),點(diǎn)坐標(biāo)為,若直線, 的斜率之和為定值3求證:直線必經(jīng)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

【答案】(1).(2)見解析.

【解析】試題分析:(1)設(shè)P、M的坐標(biāo),根據(jù)條件得兩點(diǎn)坐標(biāo)關(guān)系,再代入點(diǎn)滿足的方程,化簡(jiǎn)得點(diǎn)的軌跡的方程;(2)由題意,得即得,再將直線方程代入橢圓方程,利用韋達(dá)定理化簡(jiǎn)得

最后根據(jù)點(diǎn)斜式特點(diǎn)得定點(diǎn).

試題解析: 1)設(shè)點(diǎn)P、M的坐標(biāo)分別為 (x,y)、 (x0,y0),由,得

由點(diǎn)M在圓上,故,代入得

∴ 點(diǎn)P的軌跡C的方程為

(2)當(dāng)直線l的斜率不存在時(shí),設(shè)直線l的方程為: ,

設(shè)A,B兩點(diǎn)的坐標(biāo)分別為 (x0,y0)、(x0, y0),

由題意,,解得,

所以直線l的方程為: .當(dāng)直線l的斜率存在時(shí),

設(shè)直線l的方程為y=kx+b,C聯(lián)立,

消元得

設(shè)A,B兩點(diǎn)的坐標(biāo)分別為 (x1,y1)、 (x2,y2),

, (*).

由題意,得

y1=kx1+by2=kx2+b代入上式,可得,

所以.(**)

將(*)代入(**),化簡(jiǎn)得,解得,

代入直線l方程,得

不論b怎么變化,當(dāng)=0x=時(shí),

綜上所述,直線l恒過(guò)定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(l,2)在函數(shù)f(x)=ax3的圖象上,則過(guò)點(diǎn)A的曲線C:y=fx)的切線方程是( 。

A. 6x﹣y﹣4=0 B. x﹣4y+7=0

C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘有一著名的尺規(guī)作圖題“倍立方問題”:求作一個(gè)正方體,使它的體積等于已知立方體體積的2倍,倍立方問題可以利用拋物線(可尺規(guī)作圖)來(lái)解決,首先作一個(gè)通徑為其中正數(shù)為原立方體的棱長(zhǎng)的拋物線,如圖,再作一個(gè)頂點(diǎn)與拋物線頂點(diǎn)重合而對(duì)稱軸垂直的拋物線,且與交于不同于點(diǎn)的一點(diǎn),自點(diǎn)向拋物線的對(duì)稱軸作垂線,垂足為可使以為棱長(zhǎng)的立方體的體積為原立方體的2.

1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的標(biāo)準(zhǔn)方程;

(2)為使以為棱長(zhǎng)的立方體的體積為原立方體的2倍,求拋物線的標(biāo)準(zhǔn)方程(只須以一個(gè)開口方向?yàn)槔?/span>.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)棱錐的三視圖如圖,則該棱錐的全面積為(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有4個(gè)人參加某娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇,為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

(1) 求出4個(gè)人中恰有2個(gè)人去 參加甲游戲的概率;

(2)求這4個(gè)人中去參加甲游戲人數(shù)大于去參加乙游戲的人數(shù)的概率;

(3)用分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】生于瑞士的數(shù)學(xué)巨星歐拉在1765年發(fā)表的《三角形的幾何學(xué)》一書中有這樣一個(gè)定理:“三角形的外心、垂心和重心都在同一直線上!边@就是著名的歐拉線定理,在中,分別是外心、垂心和重心,邊的中點(diǎn),下列四個(gè)結(jié)論:(1);(2);(3);(4)正確的個(gè)數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某公園摩天輪的半徑為,圓心距地面的高度為,摩天輪做勻速轉(zhuǎn)動(dòng),每轉(zhuǎn)一圈,摩天輪上的點(diǎn)的起始位置在最低點(diǎn)處.

(1)已知在時(shí)刻時(shí)距離地面的高度,(其中),求時(shí)距離地面的高度;

(2)當(dāng)離地面以上時(shí),可以看到公園的全貌,求轉(zhuǎn)一圈中有多少時(shí)間可以看到公園的全貌?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,在底面中, 的中點(diǎn), 是棱的中點(diǎn), = = = = = =.

(1)求證: 平面

(2)求證:平面底面;

(3)試求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為雙曲線 的右焦點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線依次與雙曲線的左、右支交于點(diǎn),若, ,則該雙曲線的離心率為(

A. B. C. D.

【答案】B

【解析】,設(shè)雙曲線的左焦點(diǎn)為,連接,由對(duì)稱性可知, 為矩形,且,故選B.

方法點(diǎn)睛】本題主要考查雙曲線的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來(lái)求解;④根據(jù)圓錐曲線的統(tǒng)一定義求解.

型】單選題
結(jié)束】
12

【題目】點(diǎn)到點(diǎn), 及到直線的距離都相等,如果這樣的點(diǎn)恰好只有一個(gè),那么實(shí)數(shù)的值是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案