解:(1)①在Rt△ABD中,AB=50km,∴
,∴DC=100-BD=100-50tanθ.
∴
…(4分)
②在Rt△ABD中,
,
∴
.….(8分)
注:定義域不寫或寫錯扣(1分)
(2)①
,….(10分)
當
時,y'<0,∴函數y在
單調遞減;
當
時,y'>0,
∴函數y在(0,α)單調遞增….(12分)
∴當
時,
….(13分)
此時
.….(14分)
答:當
時,從A到C所用時間最少為
.….(15分)
②
.….(10分)
當
時,y'<0,∴函數y在
單調遞減;
當
時,函數在
單調遞增….(12分)
∴當
時,
.…(14分)
答:當
時,從A到C所用時間最少為
….(15分)
分析:(1)①用θ表示出AD與BD,從而可以表示出DC,由路程除以速度得時間,建立起時間關于θ函數即可;
②設BD=x(km),可用公股定理求出AD,再由BC=100,用x表示出DC,由路程除以速度得時間,建立起時間關于x函數即可;
(2)選①,對函數進行求導研究函數的單調性,借助三角函數的性質可得出當當
時,用時最少,代入函數關系式求出最值即可.
選②對函數求導,研究出函數的單調性確定出當
時,用時最少,求出
時的函數值即可,
點評:本題考查在實際問題中建立三角函數模型,應用三角函數模型求解用時最少的問題,求解本題的關鍵是對問題進行細致分析得出符合條件的函數模型,本題在求最值時用到了導數研究單調性,用導數研究函數的單調性是一個非常方便的工具,遇到判斷函數的單調性的問題時不妨優(yōu)先考慮一下用導數.本題符號較多,運算較繁,極易出錯,做題時要認真嚴謹.