設(shè)函數(shù)f(x)=x3-
3
2
ax2+a(a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,2]上的最小值;
(Ⅲ)是否存在實數(shù)a使得函數(shù)f(x)在區(qū)間(-1,2)上既存在最大值又存在最小值,若存在,求出a的取值范圍;若不存在,說明理由.
考點:導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)利用導(dǎo)數(shù)即可求得函數(shù)的單調(diào)區(qū)間,注意對a的討論;
(Ⅱ)利用(Ⅰ)的結(jié)論,通過函數(shù)的單調(diào)性求得函數(shù)的最小值;
(Ⅲ)利用導(dǎo)數(shù)求函數(shù)的最值,關(guān)鍵是對a的分類討論要全面具體.
解答: 解:(Ⅰ)因為f′(x)=3x(x-a),所以有:
當(dāng)a>0時,函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,0),(a,+∞),單調(diào)遞減區(qū)間為(0,a);
當(dāng)a<0時,函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,a),(0,+∞),單調(diào)遞減區(qū)間為(a,0);
當(dāng)a=0時,f′(x)=3x2≥0,所以函數(shù)f(x)在區(qū)間(-∞,+∞)上遞增;(4分)
(Ⅱ)當(dāng)a≤0時,由(1)易知f(x)在區(qū)間[0,2]上單調(diào)遞增,故最小值為f(0)=a;
當(dāng)a≥2時,由(1)知f(x)在[0,2]上單調(diào)遞減,故最小值為f(2)=8-5a
當(dāng)0<a<2時,由(1),f(x)在[0,a]上遞減,在[a,2]上遞增,
所以此時最小值為f(a)=-
1
2
a3+a
;                     (8分)
(Ⅲ)當(dāng)a≤-1時,由(1),f(x)在(-1,0]上單調(diào)遞減,在[0,2)上單調(diào)遞增,
所以此時只存在最小值f(0)而不存在最大值,不合題意;
當(dāng)-1<a<0時,由(1),f(x)在(-1,a]上單調(diào)遞增,在[a,0]上單調(diào)遞減,在[0,2)上單調(diào)遞增,
此時,若函數(shù)f(x)既存在最大值又存在最小值,
則最大值必為f(a),最小值必為f(0),于是應(yīng)有
f(0)≤f(-1)
f(a)≥f(2)
,解得a≤-4,
又-1<a<0,此時a不存在;
當(dāng)a=0時,因為由(1)可知函數(shù)f(x)在區(qū)間(-1,2)上單調(diào)遞增,
所以此時既不存在最大值也不存在最小值;
當(dāng)0<a<2時,由(1),f(x)在(-1,0]上單調(diào)遞增,在[0,a]上單調(diào)遞減,
在[a,2)上單調(diào)遞增,若存在最大值與最小值,則應(yīng)有
f(a)≤f(-1)
f(0)≥f(2)

解得a≥2,又0<a<2,故此時a不存在;
當(dāng)a≥2時,因為f(x)在(-1,0]上單調(diào)遞增,在[0,2)上單調(diào)遞減,
于是只存在最大值不存在最小值,不合題意.
綜上不存在實數(shù)a使所給函數(shù)在給定區(qū)間上既存在最大值又存在最小值.(12分)
點評:本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求單調(diào)區(qū)間及最值的知識,考查分類討論思想的運用能力,邏輯性強,屬難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若a2+a4+a9=24,則S9=( 。
A、36B、72C、144D、70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,點B(0,
3
)為短軸的一個端點,∠OF2B=60°.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如圖,過右焦點F2,且斜率為k(k≠0)的直線l與橢圓C相交于E、F兩點,A為橢圓的右頂點,直線AE、AF分別交直線x=3于點M、N,線段MN的中點為P,記直線PF2的斜率為k′.求證:k•k′為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心為C的圓經(jīng)過點A(-1,1)和B(-2,-2),且圓心在直線l:x+y-1=0上.
(1)求圓心為C的圓的標(biāo)準(zhǔn)方程;
(2)若直線kx-y+5=0被圓C所截得的弦長為8,求k的值;
(3)設(shè)點P在圓C上,點Q在直線l:x-y+5=0上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+bln(x+1).
(1)若x=1時,函數(shù)f(x)取最小值,求實數(shù)b的值;
(2)若函數(shù)f(x)在定義域上是單調(diào)函數(shù),求實數(shù)b的取值范圍;
(3)若b=-1,證明對任意正整數(shù)n,不等式
n
k=1
f(
1
k
)<1+
1
23
+
1
33
+…+
1
n3
都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1的圓心在坐標(biāo)原點O,且恰好與直線l1:x-2y+3
5
=0相切,點A為圓上一動點,AM⊥x軸于點M,且動點N滿
ON
=
3
3
OA
+(1-
3
3
OM
,設(shè)動點N的軌跡為曲線C.
(I)求曲線C的方程;
(Ⅱ)直線l與直線l1垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x+
3
sin2x,x∈R.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)將函數(shù)f(x)圖象上所有點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變得到函數(shù)h(x)的圖象,再將h(x)的圖象向右平衡移
π
3
個單位得到g(x)的圖象,求函數(shù)g(x)的解析式,并求g(x)在[0,π]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的可導(dǎo)函數(shù),且f′(1)=2,則
lim
h→0
f(1+h)-f(1)
h
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)一個總體由編號為01,02,…,29,30的30個個體組成.利用下面的隨機數(shù)表選取4個個體,選取方法是從隨機數(shù)表第2行的第3列數(shù)字0開始由左到右依次選取兩個數(shù)字,則選出來的第4個個體的編號為
 

78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  55 80 20 36 35  48 69 97 28 01

查看答案和解析>>

同步練習(xí)冊答案