A. | -3 | B. | -2 | C. | -1 | D. | 不能確定 |
分析 根據(jù)解析式和奇函數(shù)的性質(zhì):f(-x)=-f(x),列出方程求出a、b的值,即可得到a-b的值.
解答 解:因為f(x)=$\left\{\begin{array}{l}{a{x}^{2}+2x,x≥0}\\{{x}^{2}+bx,x<0}\end{array}\right.$是奇函數(shù),
所以f(-x)=-f(x),
當(dāng)x>0時,-x<0,
則(-x)2-bx=-(ax2+2x),即x2-bx=-ax2-2x,
所以a=-1、b=2,則a-b=-3,
故選:A.
點評 本題考查奇函數(shù)的性質(zhì):f(-x)=-f(x),以及方程思想的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最大值2$\sqrt{2}$ | B. | 最大值$\frac{\sqrt{2}}{2}$ | C. | 最小值2$\sqrt{2}$ | D. | 最小值$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | 1 | C. | $\frac{4}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com