【題目】某校學(xué)生會(huì)開(kāi)展了一次關(guān)于垃圾分類問(wèn)卷調(diào)查的實(shí)踐活動(dòng),組織部分學(xué)生干部在幾個(gè)大型小區(qū)隨機(jī)抽取了共50名居民進(jìn)行問(wèn)卷調(diào)查.調(diào)查結(jié)束后,學(xué)生會(huì)對(duì)問(wèn)卷結(jié)果進(jìn)行了統(tǒng)計(jì),并將其中一個(gè)問(wèn)題是否知道垃圾分類方法(知道或不知道)的調(diào)查結(jié)果統(tǒng)計(jì)如下表:

年齡(歲)

頻數(shù)

14

12

8

6

知道的人數(shù)

3

4

8

7

3

2

1)求上表中的的值,并補(bǔ)全右圖所示的的頻率直方圖;

2)在被調(diào)查的居民中,若從年齡在的居民中各隨機(jī)選取1人參加垃圾分類知識(shí)講座,求選中的兩人中僅有一人不知道垃圾分類方法的概率.

【答案】1m=4n=6,圖見(jiàn)解析 2

【解析】

1)首先分別求出的頻率,再計(jì)算即可,根據(jù)的值即可補(bǔ)全頻率分布直方圖.

2)首先列出年齡在,的居民中各隨機(jī)選取1人的所有基本事件,再找到其中僅有一人不知道垃圾分類方法的基本事件個(gè)數(shù),由古典概型公式即可求出概率.

1)年齡在的頻數(shù)

年齡在的頻數(shù)為.

頻率直方圖如圖所示:

2)記年齡在區(qū)間的居民為(其中居民不知道垃圾分類方法);

年齡在區(qū)間的居民為(其中居民不知道垃圾分類方法).

從年齡在的居民中各隨機(jī)選取1人的所有基本事件有:

,,,,,,,,,,,,,,,,,,,,

個(gè)基本事件,

其中僅有一人不知道垃圾分類方法的基本事件共有個(gè),

所以,選中的兩人中僅有一人不知道垃圾分類方法的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E的左、右焦點(diǎn)分別為F1,F2,離心率為,點(diǎn)A在橢圓E上,∠F1AF260°,△F1AF2的面積為4.

(1)求橢圓E的方程;

(2)過(guò)原點(diǎn)O的兩條互相垂直的射線與橢圓E分別交于P,Q兩點(diǎn),證明:點(diǎn)O到直線PQ的距離為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)為1,若對(duì)任意的nN*,數(shù)列{an}滿足an+13an2,則稱數(shù)列{an}具有性質(zhì)L

)判斷下面兩個(gè)數(shù)列是否具有性質(zhì)L

1,3,5,79,;

1,4,16,64,256,

)若{an}是等差數(shù)列且具有性質(zhì)L,其前n項(xiàng)和Sn滿足Sn2n2+2nnN*),求數(shù)列{an}的公差d的取值范圍;

)若{an}是公比為正整數(shù)的等比數(shù)列且具有性質(zhì)L,設(shè)bnannN*),且數(shù)列{bn}不具有性質(zhì)L,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)用表示,中的較大者,記函數(shù).若函數(shù)內(nèi)恰有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓的右焦點(diǎn),過(guò)點(diǎn)的直線交橢圓于兩點(diǎn). 的中點(diǎn),直線與直線交于點(diǎn).

(Ⅰ)求征:

(Ⅱ)求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為,且經(jīng)過(guò)點(diǎn).

1)求橢圓的方程;

2)設(shè)是橢圓軸正半軸的交點(diǎn),上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,請(qǐng)說(shuō)明滿足條件的的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,AB=4,AD=2,E,F(xiàn),O分別為DC,AE,BC的中點(diǎn).以AE為折痕把△ADE折起,使點(diǎn)D到達(dá)點(diǎn)P的位置,且平面PAE⊥平面ABCE(如圖2).

(Ⅰ)求證:BC⊥平面POF;

(Ⅱ)求直線PA與平面PBC所成角的正弦值;

(Ⅲ)在線段PE上是否存在點(diǎn)M,使得AM∥平面PBC?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,AC⊥BC,H為PC的中點(diǎn),M為AH中點(diǎn),PA=AC=2,BC=1.

(Ⅰ)求證:AH⊥平面PBC;

(Ⅱ)求PM與平面AHB成角的正弦值;

(Ⅲ)在線段PB上是否存在點(diǎn)N,使得MN∥平面ABC,若存在,請(qǐng)說(shuō)明點(diǎn)N的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型工廠有臺(tái)大型機(jī)器,在個(gè)月中,臺(tái)機(jī)器至多出現(xiàn)次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需名工人進(jìn)行維修.每臺(tái)機(jī)器出現(xiàn)故障的概率為.已知名工人每月只有維修臺(tái)機(jī)器的能力,每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障時(shí)有工人維修,就能使該廠獲得萬(wàn)元的利潤(rùn),否則將虧損萬(wàn)元.該工廠每月需支付給每名維修工人萬(wàn)元的工資.

(1)若每臺(tái)機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時(shí)有工人進(jìn)行維修,則稱工廠能正常運(yùn)行.若該廠只有名維修工人,求工廠每月能正常運(yùn)行的概率;

(2)已知該廠現(xiàn)有名維修工人.

(。┯浽搹S每月獲利為萬(wàn)元,求的分布列與數(shù)學(xué)期望;

(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問(wèn)該廠是否應(yīng)再招聘名維修工人?

查看答案和解析>>

同步練習(xí)冊(cè)答案