在4件產(chǎn)品中,有一等品2件,二等品1件(一等品與二等品都是正品),次品1件,現(xiàn)從中任取兩件,則兩件中有一件是次品的概率
 
考點:列舉法計算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計
分析:從中任取2件的基本事件,再找到兩件中有一件是次品基本事件,利用概率公式,即可求得結(jié)論.
解答: 解:一等品2件,二等品1件(一等品與二等品都是正品),用1,2,3表示,次品1件,用A表示,
現(xiàn)從中任取兩件,共有(1,2),(1,3),(1,A),(2,3),(2,A),(3,A)6種基本事件,
其中兩件中有一件是次品的有(1,A),(2,A),(3,A)
故兩件中有一件是次品的概率P=
3
6
=
1
2

故答案為:
1
2
點評:本題考查概率的計算,確定基本事件的個數(shù)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時,f(x)=sin(2x+
π
3
).
(1)求x∈[-
π
2
,0]時,f(x)的解析式;
(2)求函數(shù)f(x)的單增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校就一問題進(jìn)行內(nèi)部問卷調(diào)查,已知該學(xué)校有男學(xué)生90人,女學(xué)生108人,教師36人.用分層抽樣的方法從中抽取13人進(jìn)行問卷調(diào)查.問卷調(diào)查的問題設(shè)置為“同意”,“不同意”兩種,且每人都做一種選擇.下面表格中提供了被調(diào)查人答卷情況的部分信息. 
 同意不同意合計
教師1  
女生 4 
男生 2 
(Ⅰ)請完成此統(tǒng)計表;
(Ⅱ)根據(jù)此次調(diào)查,估計全校對這一問題持“同意”意見的人數(shù);
(Ⅲ)從被調(diào)查的女生中選取2人進(jìn)行訪談,求選到的兩名學(xué)生中,恰有一人“同意”一人“不同意”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)從1到9的九個數(shù)字中取三個偶數(shù)四個奇數(shù),試問:能組成多少個沒有重復(fù)數(shù)字的七位數(shù)?其中偶數(shù)排在一起,奇數(shù)也排在一起的有幾個?
(2)在二項式(
x
+
1
2
4x
n的展開式中,只有第五項的二項式系數(shù)最大,把展開式中所有的項重新排成一列,求有理項不相鄰的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實數(shù)集R上的函數(shù)f(x)滿足f(-x)+f(x)=0,且當(dāng)x∈(-1,0)時,f(x)=-
3x
9x+1

(1)求函數(shù)f(x)在(-1,1)上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性;
(3)當(dāng)λ取何值時,方程f(x)=λ在(-1,1)上有實數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t+3
y=3-t
(參數(shù)t∈R),圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+2
(參數(shù)θ∈[0,2π)),則圓心到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知MN為長寬高分別為3,4,5的長方體ABCD-A1B1C1D1的外接球的一條直徑,P為該長方體表面上任一點,則MN=
 
,
PM
PN
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點M(3,1),作圓(x-2)2+(y-3)2=1的兩條切線,切點為A、B
(1)求兩切線MA、MB的方程;
(2)求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是單調(diào)函數(shù),又是奇函數(shù)的是(  )
A、y=x5
B、y=5x
C、y=log2x
D、y=x-1

查看答案和解析>>

同步練習(xí)冊答案