已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為,,點(diǎn)在橢圓 上,過點(diǎn)的直線與拋物線交于兩點(diǎn),拋物線在點(diǎn)處的切線分別為,且與交于點(diǎn).
(1) 求橢圓的方程;
(2) 是否存在滿足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(gè)(不必求出點(diǎn)的坐標(biāo)); 若不存在,說明理由.
(1). (2)滿足條件的點(diǎn)有兩個(gè).
解析試題分析:(1)解法1:設(shè)橢圓的方程為,
依題意: 解得: 2分
∴ 橢圓的方程為. 3分
解法2:設(shè)橢圓的方程為,
根據(jù)橢圓的定義得,即, 1分
∵, ∴. 2分
∴ 橢圓的方程為. 3分
(2)解法1:設(shè)點(diǎn),,則,
,
∵三點(diǎn)共線, ∴. 4分
∴,
化簡(jiǎn)得:. ① 5分
由,即得. 6分
∴拋物線在點(diǎn)處的切線的方程為,即. ②
同理,拋物線在點(diǎn)處的切線的方程為 . ③ 8分
設(shè)點(diǎn),由②③得:,
而,則 . 9分
代入②得 , 10分
則,代入 ① 得 ,即點(diǎn)的軌跡方程為. 11分
若 ,則點(diǎn)在橢圓
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn).
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點(diǎn)若拋物線上一點(diǎn)滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直接坐標(biāo)系xOy中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為.
(1)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線L的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直角坐標(biāo)系中,一直角三角形,,B、D在軸上且關(guān)于原點(diǎn)對(duì)稱,在邊上,BD=3DC,△ABC的周長(zhǎng)為12.若一雙曲線以B、C為焦點(diǎn),且經(jīng)過A、D兩點(diǎn).
⑴ 求雙曲線的方程;
⑵ 若一過點(diǎn)(為非零常數(shù))的直線與雙曲線相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)、,且,問在軸上是否存在定點(diǎn),使?若存在,求出所有這樣定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
己知橢圓的離心率為,是橢圓的左右頂點(diǎn),是橢圓的上下頂點(diǎn),四邊形的面積為.
(1)求橢圓的方程;
(2)圓過兩點(diǎn).當(dāng)圓心與原點(diǎn)的距離最小時(shí),求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)命題p:函數(shù)在上是增函數(shù);命題q:方程有兩個(gè)不相等的負(fù)實(shí)數(shù)根。求使得pq是真命題的實(shí)數(shù)對(duì)為坐標(biāo)的點(diǎn)的軌跡圖形及其面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線l:x=my+1過橢圓的右焦點(diǎn)F,拋物線:的焦點(diǎn)為橢圓C的上頂點(diǎn),且直線l交橢圓C于A、B兩點(diǎn),點(diǎn)A、F、B在直線g:x=4上的射影依次為點(diǎn)D、K、E.(1)橢圓C的方程;(2)直線l交y軸于點(diǎn)M,且,當(dāng)m變化時(shí),探求λ1+λ2的值是否為定值?若是,求出λ1+λ2的值,否則,說明理由;(3)接AE、BD,試證明當(dāng)m變化時(shí),直線AE與BD相交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓的方程為它的離心率為,一個(gè)焦點(diǎn)是(-1,0),過直線上一點(diǎn)引橢圓的兩條切線,切點(diǎn)分別是A、B.
(1)求橢圓的方程;
(2)若在橢圓上的點(diǎn)處的切線方程是.求證:直線AB恒過定點(diǎn)C,并求出定點(diǎn)C的坐標(biāo);
(3)是否存在實(shí)數(shù),使得求證: (點(diǎn)C為直線AB恒過的定點(diǎn)).若存在,請(qǐng)求出,若不存在請(qǐng)說明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com