若圓錐軸截面的頂角θ滿足,則其側(cè)面展開(kāi)圖中心角α滿足( )
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2014·鶴壁淇縣檢測(cè))如圖所示,已知C為圓(x+)2+y2=4的圓心,點(diǎn)A(,0),P是圓上的動(dòng)點(diǎn),點(diǎn)Q在圓的半徑CP所在直線上,且當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PB與底面所成的角為45°,底面ABCD為直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1.
(1)求證:平面PAC⊥平面PCD;
(2)在棱PD上是否存在一點(diǎn)E,使CE∥平面PAB?若存在,請(qǐng)確定E點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(1)證明:AB⊥A1C;
(2)若平面ABC⊥平面AA1B1B,AB=CB=2,求直線A1C 與平面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示的多面體是由底面為ABCD的長(zhǎng)方體被截面AEC1F所截而得到的,其中AB=4,BC=2,CC1=3,BE=1.
(1)求BF的長(zhǎng);
(2)求點(diǎn)C到平面AEC1F的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E為AB的中點(diǎn),將△ADE與△BEC分別沿ED、EC向上折起,使A、B重合于點(diǎn)P,則三棱錐P-DCE的外接球的體積為( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為2.動(dòng)點(diǎn)E、F在棱A1B1上,點(diǎn)Q是棱CD的中點(diǎn),動(dòng)點(diǎn)P在棱AD上.若EF=1,DP=x,A1E=y(x,y大于零),則三棱錐P-EFQ的體積( )
A.與x、y都有關(guān)
B.與x、y都無(wú)關(guān)
C.與x有關(guān),與y無(wú)關(guān)
D.與y有關(guān),與x無(wú)關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖是正方體或四面體,P、Q、R、S分別是所在棱的中點(diǎn),則這四個(gè)點(diǎn)不共面的一個(gè)圖是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,四棱錐P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分別為PB,AB,BC,PD,PC的中點(diǎn).
(1)求證:CE∥平面PAD;
(2)求證:平面EFG⊥平面EMN.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com