分析 (1)利用二倍角公式和將次公式化簡得f(x)=sin(2x-$\frac{π}{6}$)-$\frac{1}{2}$,代入周期公式求出;
(2)由f(x)=-1得sin(2x-$\frac{π}{6}$)=$-\frac{1}{2}$.而$\frac{2π}{3}-2x$=$\frac{π}{2}$-(2x-$\frac{π}{6}$),故用誘導公式可求出$cos(\frac{2π}{3}-2x)$.
解答 解:(1)$f(x)=\frac{{\sqrt{3}}}{2}sin2x-\frac{1+cos2x}{2}$=$\frac{{\sqrt{3}}}{2}sin2x-\frac{cos2x}{2}-\frac{1}{2}=sin(2x-\frac{π}{6})-\frac{1}{2}$,
∴f(x)的最小正周期為$T=\frac{2π}{2}=π$.
(2)∵f(x)=-1,
∴$sin(2x-\frac{π}{6})-\frac{1}{2}=-1$,即$sin(2x-\frac{π}{6})=-\frac{1}{2}$,
∴$cos({\frac{2π}{3}-2x})=cos({\frac{π}{2}-(2x-\frac{π}{6})})=sin(2x-\frac{π}{6})=-\frac{1}{2}$.
點評 本題考查了三角函數(shù)化簡及誘導公式應用,發(fā)現(xiàn)$\frac{2π}{3}-2x$與2x-$\frac{π}{6}$的關(guān)系是解題關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①②⑤ | B. | ①②④⑤ | C. | ①②③⑤ | D. | ①③④⑤ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com