已知各項(xiàng)均為正數(shù)的兩個(gè)無窮數(shù)列滿足
(Ⅰ)當(dāng)數(shù)列是常數(shù)列(各項(xiàng)都相等的數(shù)列),且時(shí),求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)、都是公差不為0的等差數(shù)列,求證:數(shù)列有無窮多個(gè),而數(shù)列惟一確定;
(Ⅲ)設(shè),,求證:
(Ⅰ);(Ⅱ)詳見解析;(Ⅲ)詳見解析.

試題分析:(Ⅰ)由是常數(shù)列,得,進(jìn)而探求數(shù)列項(xiàng)間的關(guān)系;(Ⅱ)將等差數(shù)列、 的通項(xiàng)公式代入,根據(jù)等式恒成立,求首項(xiàng)和公差;(Ⅲ)利用題中所給關(guān)系式對進(jìn)行適當(dāng)放縮,求出上界和下界.
試題解析:
(Ⅰ)因?yàn)閿?shù)列是常數(shù)列,且,所以①,因此②,①-②得,,這說明數(shù)列的序號為奇數(shù)的項(xiàng)及序號為偶數(shù)的項(xiàng)均按原順序組成公差為2的等差數(shù)列,又,,所以,因此,,即.
(Ⅱ)設(shè)、都是公差分別為,將其通項(xiàng)公式代入,因?yàn)樗呛愕仁,所?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240214450211994.png" style="vertical-align:middle;" />,解得,因此.
由于可以取無窮多非零的實(shí)數(shù),故數(shù)列有無窮多個(gè),而數(shù)列惟一確定;
(Ⅲ)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240214445061175.png" style="vertical-align:middle;" />,且,所以,即,所以,得,因此.
又由得,,而,所以,因此
,所以,所以.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對于任意的,滿足關(guān)系式
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)公式是,前項(xiàng)和為,求證:對于任意的正整數(shù),總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)公差為)的等差數(shù)列與公比為)的等比數(shù)列有如下關(guān)系:,,
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)記,,求集合中的各元素之和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列及其前項(xiàng)和滿足:).
(1)證明:設(shè),是等差數(shù)列;(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩點(diǎn),.以為圓心, 為半徑作圓交軸于點(diǎn)(異于),記作⊙;以為圓心, 為半徑作圓交軸于點(diǎn)(異于),記作⊙;……;以為圓心,為半徑作圓交軸于點(diǎn)(異于),記作⊙.當(dāng)時(shí),過原點(diǎn)作傾斜角為的直線與⊙交于,.考察下列論斷:
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),           .
由以上論斷推測一個(gè)一般的結(jié)論:對于,                                    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為等差數(shù)列的前n項(xiàng)和,,,則的等比中項(xiàng)為(    )
         B.      C.4           D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某輛汽車購買時(shí)的費(fèi)用是15萬元,每年使用的保險(xiǎn)費(fèi)、路橋費(fèi)、汽油費(fèi)等約為1.5萬元.年維
修保養(yǎng)費(fèi)用第一年3000元,以后逐年遞增3000元,則這輛汽車報(bào)廢的最佳年限(即使用多少年的年平均費(fèi)用最少)是 (   )
A.8年B.10年C.12年D.15年

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列中,已知.
(Ⅰ)求;
(Ⅱ)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

公差不為0的等差數(shù)列{}的前21項(xiàng)的和等于前8項(xiàng)的和.若,則k=(     )
A.20B.21 C.22D.23

查看答案和解析>>

同步練習(xí)冊答案