2.下列各函數(shù)中,在(-∞,+∞)上為增函數(shù)的是(  )
A.y=(0.2)xB.y=4-xC.y=3xD.y=($\frac{1}{\sqrt{2}+1}$)x

分析 由指數(shù)函數(shù)的單調(diào)性,關(guān)注底數(shù)的范圍可得.

解答 解:由指數(shù)函數(shù)的單調(diào)性可得:
選項(xiàng)A,0.2∈(0,1),故函數(shù)單調(diào)遞減,錯(cuò)誤;
選項(xiàng)B,可化為y=$(\frac{1}{4})^{x}$,同A可得函數(shù)單調(diào)遞減,錯(cuò)誤;
選項(xiàng)C,3>1,故函數(shù)單調(diào)遞增,故正確;
選項(xiàng)D,$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{(\sqrt{2})^{2}-1}$=$\sqrt{2}-1$∈(0,1),故函數(shù)單調(diào)遞減,錯(cuò)誤.
故選:C

點(diǎn)評(píng) 本題考查指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知α,β是平面,m,n是直線.下列命題中不正確的是( 。
A.若m∥n,m⊥α,則n⊥αB.若m∥α,α∩β=n,則m∥n
C.若m⊥α,m⊥β,則α∥βD.若m⊥α,m∩β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若y=asinx+b的最大值為3,最小值為1,則ab=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)在R上單調(diào)遞增,且函數(shù)f(x-1)是定義在R上的奇函數(shù),則不等式f(x+3)<0的解集為( 。
A.(-∞,-3)B.(4,+∞)C.(-∞,1)D.(-∞,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.?ABCD中,已知A(-1,0),B(3,0),C(1,-5),求D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知正方體ABCD-A′B′C′D′的棱長(zhǎng)為a,點(diǎn)P是平面AA′D′D的中心,Q為B′D′上一點(diǎn),且PQ∥平面AA′B′B,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)=2cosx+|cosx|,畫出函數(shù)f(x)的草圖,求函數(shù)f(x)的定義域、值域、單調(diào)區(qū)間,并判斷函數(shù)f(x)的奇偶性和周期性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{{x}^{2}+2x+a}{x}$,x∈[1,+∞).
(1)當(dāng)a=$\frac{1}{4}$時(shí),求函數(shù)f(x)的最小值;
(2)若對(duì)任意x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍;
(3)若關(guān)于x的方程f(x)=a在[2,3]上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.用符號(hào)“∈”或“∉”填空:
(1)設(shè)A為所有亞洲國(guó)家組成的集合,則:
中國(guó)∈A,美國(guó)∉A,印度∈A,英國(guó)∉A;
(2)若A={x|x2=x},則-1∉A;
(3)若B={x|x2+x-6=0},則3∉B;
(4)若C={x∈N|1≤x≤10,},則8∈C,9.1∉C.

查看答案和解析>>

同步練習(xí)冊(cè)答案