【題目】已知為坐標(biāo)原點(diǎn),橢圓的右焦點(diǎn)為,過(guò)的直線相交于兩點(diǎn),點(diǎn)滿足.

1)當(dāng)的傾斜角為時(shí),求直線的方程;

2)試探究在軸上是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2軸上是否存在定點(diǎn),,使得為定值

【解析】

1)聯(lián)立直線與橢圓方程求出,進(jìn)而可求的的坐標(biāo),即可得到直線的方程;

2)假設(shè),設(shè)直線的方程為,,,,聯(lián)立直線和橢圓方程得到韋達(dá)定理,再把韋達(dá)定理代入化簡(jiǎn)即得解.

1)橢圓的右焦點(diǎn)為

直線的方程為,

,解得

不妨設(shè),,

點(diǎn)滿足點(diǎn),

,所以直線的方程為

2)假設(shè),設(shè)直線的方程為,,,,,

,消可得,

,,

,,,

,

,

當(dāng)且僅當(dāng),即時(shí),為定值.

故在軸上是否存在定點(diǎn),,使得為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題中,正確命題的個(gè)數(shù)有(

,

②命題“,”的否定是“

③“若,則,中至少有一個(gè)不小于2”的逆命題是真命題

④復(fù)數(shù),則的充分不必要條件是

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐的底面是邊長(zhǎng)為2的正方形,平面平面,,

1)求證:平面平面;

2)設(shè)的中點(diǎn),問(wèn)邊上是否存在一點(diǎn),使平面,并求此時(shí)點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花卉企業(yè)引進(jìn)了數(shù)百種不同品種的康乃馨,通過(guò)試驗(yàn)田培育,得到了這些康乃馨種子在當(dāng)?shù)丨h(huán)境下的發(fā)芽率,并按發(fā)芽率分為組:、、加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.企業(yè)對(duì)康乃馨的種子進(jìn)行分級(jí),將發(fā)芽率不低于的種子定為“級(jí)”,發(fā)芽率低于但不低于的種子定為“級(jí)”,發(fā)芽率低于的種子定為“級(jí)”.

)現(xiàn)從這些康乃馨種子中隨機(jī)抽取一種,估計(jì)該種子不是“級(jí)”種子的概率;

)該花卉企業(yè)銷售花種,且每份“級(jí)”、“級(jí)”、“級(jí)”康乃馨種子的售價(jià)分別為元、元、元.某人在市場(chǎng)上隨機(jī)購(gòu)買了該企業(yè)銷售的康乃馨種子兩份,共花費(fèi)元,以頻率為概率,求的分布列和數(shù)學(xué)期望;

)企業(yè)改進(jìn)了花卉培育技術(shù),使得每種康乃馨種子的發(fā)芽率提高到原來(lái)的倍,那么對(duì)于這些康乃馨的種子,與舊的發(fā)芽率數(shù)據(jù)的方差相比,技術(shù)改進(jìn)后發(fā)芽率數(shù)據(jù)的方差是否發(fā)生變化?若發(fā)生變化,是變大了還是變小了?(結(jié)論不需要證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某建材商場(chǎng)國(guó)慶期間搞促銷活動(dòng),規(guī)定:如果顧客選購(gòu)物品的總金額不超過(guò)600元,則不享受任何折扣優(yōu)惠;如果顧客選購(gòu)物品的總金額超過(guò)600元,則超過(guò)600元部分享受一定的折扣優(yōu)惠,折扣優(yōu)惠按下表累計(jì)計(jì)算.

某人在此商場(chǎng)購(gòu)物獲得的折扣優(yōu)惠金額為30元,則他實(shí)際所付金額為____元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量表得如下頻數(shù)分布表:

質(zhì)量指標(biāo)值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

II)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程是.

(Ⅰ)求實(shí)數(shù),的值;

(Ⅱ)若函數(shù)有兩個(gè)不同的零點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線的焦點(diǎn)為,是坐標(biāo)原點(diǎn),為拋物線上的一點(diǎn),向量軸正方向的夾角為60°,且的面積為.

1)求拋物線的方程;

2)若拋物線的準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,求當(dāng)取得最大值時(shí),直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn),,拋物線的焦點(diǎn)為線段中點(diǎn).

(1)求拋物線的方程;

(2)過(guò)點(diǎn)的直線交拋物線兩點(diǎn),,過(guò)點(diǎn)作拋物線的切線,為切線上的點(diǎn),且軸,求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案