精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知點,,拋物線的焦點為線段中點.

(1)求拋物線的方程;

(2)過點的直線交拋物線兩點,,過點作拋物線的切線,為切線上的點,且軸,求面積的最小值.

【答案】(1);(2).

【解析】

1由已知得焦點,所以,從而求出拋物線C的方程;
2,,設直線l方程為:,與拋物線方程聯立,利用求得,所以直線l的方程為:,由,求得點M的坐標,進而求出點N的坐標,所以設直線AB的方程為:,與拋物線方程聯立,設直線l方程為:,利用韋達定理代入,利用基本不等式即可求出面積的最小值.

(1)由已知得焦點的坐標為,

,

拋物線的方程為:;

(2)設直線的方程為:,設,

聯立方程,消去得:

,,,

設直線方程為:,

聯立方程,消去得:,

由相切得:,

,

,

,

直線的方程為:,

,得,,

代入直線方程,解得,

所以

,

所以,當且僅當時,取到等號,

所以面積的最小值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知為坐標原點,橢圓的右焦點為,過的直線相交于兩點,點滿足.

1)當的傾斜角為時,求直線的方程;

2)試探究在軸上是否存在定點,使得為定值?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求曲線在點處的切線方程;

(2)證明:在區(qū)間上有且僅有個零點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某同學使用某品牌暖水瓶,其內膽規(guī)格如圖所示.若水瓶內膽壁厚不計,且內膽如圖分為①②③④四個部分,它們分別為一個半球、一個大圓柱、一個圓臺和一個小圓柱體.若其中圓臺部分的體積為,且水瓶灌滿水后蓋上瓶塞時水溢出.記蓋上瓶塞后,水瓶的最大盛水量為,

1)求;

2)該同學發(fā)現:該品牌暖水瓶盛不同體積的熱水時,保溫效果不同.為了研究保溫效果最好時暖水瓶的盛水體積,做以下實驗:把盛有最大盛水量的水的暖水瓶倒出不同體積的水,并記錄水瓶內不同體積水在不同時刻的水溫,發(fā)現水溫(單位:℃)與時刻滿足線性回歸方程,通過計算得到下表:

倒出體積

0

30

60

90

120

擬合結果

倒出體積

150

180

210

450

擬合結果

注:表中倒出體積(單位:)是指從最大盛水量中倒出的那部分水的體積.其中:

.對于數據,可求得回歸直線為,對于數據,可求得回歸直線為

(。┲赋的實際意義,并求出回歸直線的方程(參考數據:);

(ⅱ)若的交點橫坐標即為最佳倒出體積,請問保溫瓶約盛多少體積水時(盛水體積保留整數,且3.14)保溫效果最佳?

附:對于一組數據,其回歸直線中的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,,.已知分別是的中點.沿折起,使的位置且二面角的大小是60°,連接,如圖:

1)證明:平面平面

2)求平面與平面所成二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.

(1)求C的方程;

(2)設直線l不經過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學從甲乙兩個教師所教班級的學生中隨機抽取100人,每人分別對兩個教師進行評分,滿分均為100分,整理評分數據,將分數以10為組距分成6組:,,,,.得到甲教師的頻率分布直方圖,和乙教師的頻數分布表:

乙教師分數頻數分布表

分數區(qū)間

頻數

3

3

15

19

35

25

1)在抽樣的100人中,求對甲教師的評分低于70分的人數;

2)從對乙教師的評分在范圍內的人中隨機選出2人,求2人評分均在范圍內的概率;

3)如果該校以學生對老師評分的平均數是否大于80分作為衡量一個教師是否可評為該年度該校優(yōu)秀教師的標準,則甲、乙兩個教師中哪一個可評為年度該校優(yōu)秀教師?(精確到0.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在頂角為圓錐內有一截面,在圓錐內放半徑分別為的兩個球與圓錐的側面、截面相切,兩個球分別與截面相切于,則截面所表示的橢圓的離心率為( )

(注:在截口曲線上任取一點,過作圓錐的母線,分別與兩個球相切于點,由相切的幾何性質可知,,,于是,為橢圓的幾何意義)

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是定義在的偶函數,且.時,,若方程300個不同的實數根,則實數m的取值范圍為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案