【題目】某花卉企業(yè)引進(jìn)了數(shù)百種不同品種的康乃馨,通過試驗(yàn)田培育,得到了這些康乃馨種子在當(dāng)?shù)丨h(huán)境下的發(fā)芽率,并按發(fā)芽率分為組:、、、加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.企業(yè)對康乃馨的種子進(jìn)行分級,將發(fā)芽率不低于的種子定為“級”,發(fā)芽率低于但不低于的種子定為“級”,發(fā)芽率低于的種子定為“級”.
(Ⅰ)現(xiàn)從這些康乃馨種子中隨機(jī)抽取一種,估計(jì)該種子不是“級”種子的概率;
(Ⅱ)該花卉企業(yè)銷售花種,且每份“級”、“級”、“級”康乃馨種子的售價(jià)分別為元、元、元.某人在市場上隨機(jī)購買了該企業(yè)銷售的康乃馨種子兩份,共花費(fèi)元,以頻率為概率,求的分布列和數(shù)學(xué)期望;
(Ⅲ)企業(yè)改進(jìn)了花卉培育技術(shù),使得每種康乃馨種子的發(fā)芽率提高到原來的倍,那么對于這些康乃馨的種子,與舊的發(fā)芽率數(shù)據(jù)的方差相比,技術(shù)改進(jìn)后發(fā)芽率數(shù)據(jù)的方差是否發(fā)生變化?若發(fā)生變化,是變大了還是變小了?(結(jié)論不需要證明).
【答案】(Ⅰ);(Ⅱ)分布列詳見解析,數(shù)學(xué)期望為;(Ⅲ)方差變大了.
【解析】
(Ⅰ)利用頻率分布直方圖中矩形面積之和為,求出的值,再結(jié)合頻率分布直方圖以及對立事件的概率公式可求得所求事件的概率;
(Ⅱ)由題意可知,隨機(jī)變量的可能取值有、、、、,計(jì)算出隨機(jī)變量在不同取值下的概率,由此可列出隨機(jī)變量的分布列,進(jìn)而可求得隨機(jī)變量的數(shù)學(xué)期望;
(Ⅲ)根據(jù)離散型隨機(jī)變量方差的性質(zhì)可得出結(jié)論.
(Ⅰ)設(shè)事件為:“從這些康乃馨種子中隨機(jī)抽取一種,且該種子不是“級”種子”,
由圖表,得,解得,
由圖表,知“級”種子的頻率為,
故可估計(jì)從這些康乃馨種子中隨機(jī)抽取一種,該種子是“級”的概率為.
因?yàn)槭录?/span>與事件“從這些康乃馨種子中隨機(jī)抽取一種,且該種子是“級”種子”為對立事件,
所以事件的概率;
(Ⅱ)由題意,任取一顆種子,恰好是“級”康乃馨的概率為,
恰好是“級”康乃馨的概率為,
恰好是“級”的概率為.
隨機(jī)變量的可能取值有、、、、,
且,,
,,
.
所以的分布列為:
故的數(shù)學(xué)期望.
(Ⅲ)與舊的發(fā)芽率數(shù)據(jù)的方差相比,技術(shù)改進(jìn)后發(fā)芽率數(shù)據(jù)的方差變大了.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù), ).
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若曲線上的動點(diǎn)到直線的最大距離為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( 。
A. 這15天日平均溫度的極差為
B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天
C. 由折線圖能預(yù)測16日溫度要低于
D. 由折線圖能預(yù)測本月溫度小于的天數(shù)少于溫度大于的天數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實(shí)線分別為調(diào)整后與的函數(shù)圖象.
給出下列四種說法:
①圖(2)對應(yīng)的方案是:提高票價(jià),并提高成本;
②圖(2)對應(yīng)的方案是:保持票價(jià)不變,并降低成本;
③圖(3)對應(yīng)的方案是:提高票價(jià),并保持成本不變;
④圖(3)對應(yīng)的方案是:提高票價(jià),并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形中,,,,.把沿著翻折至的位置,平面,連結(jié),如圖2.
(1)當(dāng)時(shí),證明:平面平面;
(2)當(dāng)三棱錐的體積最大時(shí),求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓的右焦點(diǎn)為,過的直線與相交于兩點(diǎn),點(diǎn)滿足.
(1)當(dāng)的傾斜角為時(shí),求直線的方程;
(2)試探究在軸上是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)使用某品牌暖水瓶,其內(nèi)膽規(guī)格如圖所示.若水瓶內(nèi)膽壁厚不計(jì),且內(nèi)膽如圖分為①②③④四個(gè)部分,它們分別為一個(gè)半球、一個(gè)大圓柱、一個(gè)圓臺和一個(gè)小圓柱體.若其中圓臺部分的體積為,且水瓶灌滿水后蓋上瓶塞時(shí)水溢出.記蓋上瓶塞后,水瓶的最大盛水量為,
(1)求;
(2)該同學(xué)發(fā)現(xiàn):該品牌暖水瓶盛不同體積的熱水時(shí),保溫效果不同.為了研究保溫效果最好時(shí)暖水瓶的盛水體積,做以下實(shí)驗(yàn):把盛有最大盛水量的水的暖水瓶倒出不同體積的水,并記錄水瓶內(nèi)不同體積水在不同時(shí)刻的水溫,發(fā)現(xiàn)水溫(單位:℃)與時(shí)刻滿足線性回歸方程,通過計(jì)算得到下表:
倒出體積 | 0 | 30 | 60 | 90 | 120 |
擬合結(jié)果 | |||||
倒出體積 | 150 | 180 | 210 | … | 450 |
擬合結(jié)果 | … |
注:表中倒出體積(單位:)是指從最大盛水量中倒出的那部分水的體積.其中:
令.對于數(shù)據(jù),可求得回歸直線為,對于數(shù)據(jù),可求得回歸直線為.
(。┲赋的實(shí)際意義,并求出回歸直線的方程(參考數(shù)據(jù):);
(ⅱ)若與的交點(diǎn)橫坐標(biāo)即為最佳倒出體積,請問保溫瓶約盛多少體積水時(shí)(盛水體積保留整數(shù),且取3.14)保溫效果最佳?
附:對于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com