分析 由題意作出滿足條件的圖形,由線面位置關(guān)系找出截面可判斷選項(xiàng)的正誤.
解答 解:如圖當(dāng)CQ=$\frac{1}{2}$時(shí),即Q為CC1中點(diǎn),此時(shí)可得PQ∥AD1,AP=QD1=$\frac{\sqrt{5}}{2}$,
故可得截面APQD1為等腰梯形,故②正確;
由上圖當(dāng)點(diǎn)Q向C移動(dòng)時(shí),滿足0<CQ<$\frac{1}{2}$,只需在DD1上取點(diǎn)M滿足AM∥PQ,即可得截面為四邊形APQM,故①正確;
當(dāng)CQ=$\frac{3}{4}$時(shí),如圖,
延長DD1至N,使D1N=$\frac{1}{2}$,連接AN交A1D1于S,連接NQ交C1D1于R,連接SR,可證AN∥PQ,由△NRD1∽△QRC1,可得C1R:D1R=C1Q:D1N=1:2,故可得C1R=$\frac{1}{3}$,故④正確;
由上可知當(dāng)$\frac{3}{4}$<CQ<1時(shí),只需點(diǎn)Q上移即可,此時(shí)的截面形狀仍然上圖所示的APQRS,顯然為五邊形,故錯(cuò)誤;
⑤當(dāng)CQ=1時(shí),Q與C1重合,取A1D1的中點(diǎn)F,連接AF,可證PC1∥AF,且PC1=AF,
可知截面為APC1F為菱形,故其面積為$\frac{1}{2}$AC1•PF=$\frac{\sqrt{6}}{2}$,故正確.
故答案為:①②④⑤
點(diǎn)評(píng) 本題考查命題真假的判斷與應(yīng)用,涉及正方體的截面問題,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com