1
sin2x
的導(dǎo)函數(shù).
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)運(yùn)算法則和復(fù)合函數(shù)求導(dǎo)法則計(jì)算即可.
解答: 解:(
1
sin2x
)′=-
(sin2x)′
sin4x
=-
2sinxcosx
sin4x
=-
2cosx
sin3x
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)運(yùn)算法則和復(fù)合函數(shù)求導(dǎo)法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn),一焦點(diǎn)為F(0,
50
)的橢圓被直線l:y=3x-2截得的弦的中點(diǎn)橫坐標(biāo)為
1
2

(1)求此橢圓的方程;
(2)過定點(diǎn)M(0,9)的直線與橢圓有交點(diǎn),求直線的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C1的極坐標(biāo)方程為ρ2=
2
1+sin2θ
,直線l的極坐標(biāo)方程為ρ=
4
2
sinθ+cosθ

(Ⅰ)寫出曲線C1與直線l的直角坐標(biāo)方程;
(Ⅱ)設(shè)Q為曲線C1上一動(dòng)點(diǎn),求Q點(diǎn)到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sinA,cosA),
n
=(-
3
,-1),
m
n
,且A為銳角,求∠A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|-3<x<1},N={x|x≤a},且M∪N={x|x<1},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x=2k-1,k∈Z},B={x|x=2k,k∈Z},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:點(diǎn)A,B是單位圓圓O上不同的兩點(diǎn),設(shè)
OA
=
a
,
OB
=
b

(1)求證:(
a
+
b
)⊥(
a
-
b
);
(2)線段PQ以點(diǎn)O為中點(diǎn),且|PQ|=2|AB|,若兩個(gè)向量k
a
+
b
a
-k
b
的模相等(k≠0,k∈R),問
BP
AQ
的夾角θ取何值時(shí),
BP
AQ
的值最大?并求這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
+
1
a
=3,求a+
1
a
,a2+a-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正實(shí)數(shù)a、b、c滿足條件a+b+c=3.
(Ⅰ)求證:
a
+
b
+
c
≤3;
(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案