已知正實(shí)數(shù)數(shù)列中,,則等于(    )

A.16   B.8   C.   D.4

 

【答案】

D.

【解析】

試題分析:由得數(shù)列是一個(gè)等差數(shù)列.又有可得.所以數(shù)列的公差是3.所以=16. .所以.故選D.本題關(guān)鍵是轉(zhuǎn)化為另一個(gè)等差數(shù)列.

考點(diǎn):1.等差數(shù)列的定義.2.等差中項(xiàng)的知識(shí)點(diǎn).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列命題:(1)已知函數(shù)f(x)=x+
p
x-1
(p為常數(shù)且p>0),若f(x)在區(qū)間(1,+∞)的最小值為4,則實(shí)數(shù)p的值為
9
4
; (2)?x∈[0,
π
2
],sinx+cosx>
2
;(3)正項(xiàng)等比數(shù)列{an}中:a4.a(chǎn)6=8,函數(shù)f(x)=x(x+a3)(x+a5)(x+a7),則f(0)=16
2
;(4)若數(shù)列{an}的前n項(xiàng)和為Sn=2n2-n+1,且bn=2an+1,則數(shù)列{bn}前n項(xiàng)和為T(mén)n=4n2-n+2上述命題正確的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•楊浦區(qū)二模)(理)在平面直角坐標(biāo)系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實(shí)數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱(chēng)曲線C1、C2關(guān)于原點(diǎn)“伸縮”,變換(x,y)→(λx,λy)稱(chēng)為“伸縮變換”,λ稱(chēng)為伸縮比.
(1)已知曲線C1的方程為
x2
9
-
y2
4
=1
,伸縮比λ=2,求C1關(guān)于原點(diǎn)“伸縮變換”后所得曲線C2的方程;
(2)射線l的方程y=
2
2
x(x≥0)
,如果橢圓C1
x2
16
+
y2
4
=1
經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點(diǎn)A、B,且|AB|=
2
,求橢圓C2的方程;
(3)對(duì)拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對(duì)C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進(jìn)行下去,對(duì)拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若p1=1 , λn=(
1
2
)n
,求數(shù)列{pn}的通項(xiàng)公式pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•靜安區(qū)一模)已知等差數(shù)列{an}的首項(xiàng)為p,公差為d(d>0).對(duì)于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)f(x)=(
12
)x
的圖象分別交于點(diǎn)An與Bn(如圖所示),記Bn的坐標(biāo)為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證數(shù)列{sn}是公比絕對(duì)值小于1的等比數(shù)列;
(2)設(shè){an}的公差d=1,是否存在這樣的正整數(shù)n,構(gòu)成以bn,bn+1,bn+2為邊長(zhǎng)的三角形?并請(qǐng)說(shuō)明理由;
(3)(理)設(shè){an}的公差d(d>0)為已知常數(shù),是否存在這樣的實(shí)數(shù)p使得(1)中無(wú)窮等比數(shù)列{sn}各項(xiàng)的和S>2010?并請(qǐng)說(shuō)明理由.
(4)(文)設(shè){an}的公差d=1,是否存在這樣的實(shí)數(shù)p使得(1)中無(wú)窮等比數(shù)列{sn}各項(xiàng)的和S>2010?如果存在,給出一個(gè)符合條件的p值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省威海市高三3月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知正項(xiàng)數(shù)列,其前項(xiàng)和滿足的等比中項(xiàng).

(1)求數(shù)列的通項(xiàng)公式;

(2) 符號(hào)表示不超過(guò)實(shí)數(shù)的最大整數(shù),記,求.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案