6.在復(fù)平面內(nèi),復(fù)數(shù)z的對應(yīng)點為(1,1),則z2=(  )
A.$\sqrt{2}$B.2iC.$-\sqrt{2}$D..2+2i

分析 利用復(fù)數(shù)的幾何意義、運算法則即可得出.

解答 解:在復(fù)平面內(nèi),復(fù)數(shù)z的對應(yīng)點為(1,1),∴z=1+i.
z2=(1+i)2=2i,
故選:B.

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合D={(x1,x2)|x1>0,x2>0,x1+x2=k},其中k為正常數(shù)
(1)設(shè)u=x1x2,求u的取值范圍
(2)求證:當(dāng)k≥1時,不等式($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)≤($\frac{k}{2}-\frac{2}{k}$)2對任意(x1,x2)∈D恒成立
(3)求使不等式($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)≥($\frac{k}{2}-\frac{2}{k}$)2對任意(x1,x2)∈D恒成立的k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項和為Sn,a1=1,當(dāng)n≥2時,2Sn=(n+1)an-2.
(Ⅰ)求a2,a3和通項an
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=an•2n-1,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知tan(3π-α)=-$\frac{1}{2}$,tan(β-α)=-$\frac{1}{3}$,則tan β=( 。
A.1B.$\frac{1}{7}$C.$\frac{5}{7}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=Acos(x+\frac{π}{6})$,x∈R,且$f(\frac{π}{12})=\sqrt{2}$.
(Ⅰ)求A的值;
(Ⅱ)設(shè)α,β∈[0,$\frac{π}{2}$],$f(α+\frac{π}{3})$=-$\frac{24}{13}$,$f(β-\frac{π}{6})=\frac{8}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某市對所有高校學(xué)生進行普通話水平測試,發(fā)現(xiàn)成績服從正態(tài)分布N(μ,σ2),下表用莖葉圖列舉出來抽樣出的10名學(xué)生的成績.
(1)計算這10名學(xué)生的成績的均值和方差;
(2))給出正態(tài)分布的數(shù)據(jù):P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.
由(1)估計從全市隨機抽取一名學(xué)生的成績在(76,97)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面四邊形ABCD中,已知$\overrightarrow{AC}=({1,3}),\overrightarrow{BD}=({9,-3})$,則四邊形ABCD的面積為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合A={1,2},B={1,2,4},C={1,4,6},則(A∩B)∪C=( 。
A.{1}B.{1,4,6}C.{2,4,6}D.{1,2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≥0}\\{y≥0}\end{array}\right.$,則$\frac{x+y-3}{x-1}$的取值范圍是(-∞,-1]∪[3,+∞).

查看答案和解析>>

同步練習(xí)冊答案