精英家教網 > 高中數學 > 題目詳情
若實數x,y滿足
x-y+1≥0
x+y≥0
x≤0
,若z=x+2y,則z的最大值為(  )
A、1B、2C、3D、4
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用z的幾何意義即可得到結論.
解答: 解:作出不等式組對應的平面區(qū)域,
由z=x+2y,得y=-
1
2
x+
z
2
,平移直線y=-
1
2
x+
z
2
,由圖象可知當直線經過點A(0,1)時,
直線y=-
1
2
x+
z
2
的截距最大,此時z最大,
代入目標函數得z=2.
故選:B.
點評:本題主要考查線性規(guī)劃的應用,利用數形結合是解決線性規(guī)劃問題中的基本方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求平面BEF與平面BED夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=Asin(ωx-
π
4
)(A>0,ω>0)的最大值為2,相鄰兩條對稱軸的距離為
π
2
,則f(x)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB,垂足為F.
(1)求證PA∥平面EBD;
(2)求二面角P-AD-F的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知兩個動點P,Q分別在兩條直線l1:y=x和l2:y=-x上運動,且它們的橫坐標分別為角θ的正弦,余弦,θ∈[0,π].記
OM
=
OP
+
OQ
,求動點M的軌跡的普通方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知sin(π+α)=
3
5
,α為第三象限角,則tanα=(  )
A、
3
4
B、-
3
4
C、
4
3
D、-
4
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足an=17-3n,則使其前n項的和Sn取最大值時n的值為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的凼數y=f(x)滿足f(x+A+B)=f(x),其中A,B分別是函數g(x)=
|x|+sinx+1
|x|+1
的最大值和最小值,若當0≤x≤1時,f(x)=(
1
2
x,則f(2015)=( 。
A、1
B、0
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設P為雙曲線
x2
a2
-y2=1虛軸的一個端點,Q為雙曲線上一動點,則|PQ|最小值為
 

查看答案和解析>>

同步練習冊答案